# 水稻LEA蛋白生物信息学分析及功能分析

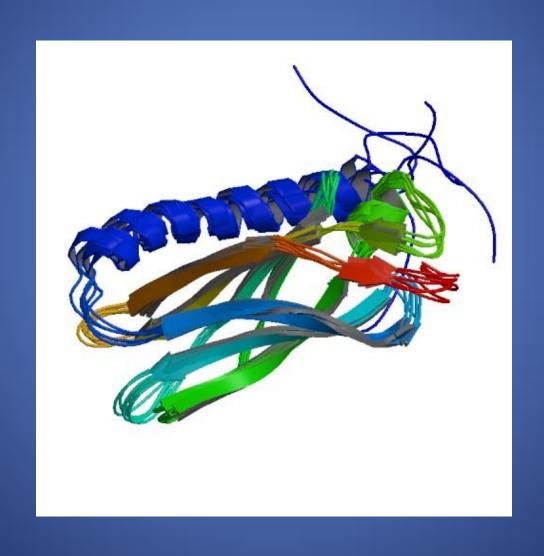
2012年寒假班3组 曹建 祝步拓 李田田 张华光

# 实验背景

### Introduction

LEA 蛋白

(late embryogenesis abundant)


胚胎晚期富集蛋白

LEA 基因是在种子成熟和发育阶段表达的基因,在种子发育过程中的胚胎晚期引起LEA蛋白的高度富集.

除此之外,在植物受到干旱、低温和盐渍等环境胁迫后造成脱水的营养组织中,LEA基因也有所表达。

Xu等(1996)将大麦的LEA蛋白基因(HVA1)转入水稻中,发现该蛋白在转基因水稻的根和叶中大量表达,第二代转基因水稻明显表现出抗旱和抗盐的功能,而且提高的幅度与LEA蛋白的表达量一致。

## 拟南芥中的LEA蛋白的三维结构



### LEA蛋白的分类

LEA1

LEA1蛋白高度亲水,其序列 内含20个氨基酸的保守基序 (TRKEQG[T/E]EGY[Q/K]EMGR KGG[L/E]) LEA2(脱水素)

通常具有由15 个氨基酸组 成的K 片段 (EKKGIMDKIKEKLPG) LEA3

具有高保守的11- 氨基酸序列 (TAQAAKEKAGE)

LEA4

• N端多为由70~80个氨基 酸组成的保守区域

#### LEA5

- LEA5 蛋白与其他LEA 蛋白相比有较大差异。
- 它通常含有高比例疏水氨基酸残基,且不具有对热的稳定特性。LEA5蛋白为球蛋白

#### LEA6

· LEA6 蛋白序列内有4 个保守基序。其中的基序1 (LEDYKMQGYGTQGHQQPKPGRG) 和基序 2(GSTDAPTLSGGAV) 高度保守,且基序下划线部分的氨基酸序列在已发现的36个LEA6 蛋白中的保守性可达100%

### LEA 蛋白的保护作用机制

### 1.LEA 蛋白对蛋白质的保护作用及其机制

- 冻融和干燥引起的脱水可导致乳酸脱氢酶、苹果酸脱氢酶、延胡索酸酶和异硫氰酸酶活性的下降甚至完全丧失。LEA蛋白可通过保护这些酶的活性,起到保护细胞及细胞器的作用.
- LEA 蛋白也可能通过蛋白质间的相互作用保护蛋白质活性。 干燥蛋白形成大量α-螺旋,后者可与部分变性的蛋白质的 疏水基团互作,起到稳定蛋白质的作用.

### 2.LEA 蛋白与非还原性糖互作的玻璃化模型

在胁迫条件下,生物体内非还原糖 (如蔗糖和海藻糖)的合成和积累增加,形成玻璃化状态。同时,细胞内大量表达的LEA 蛋白可参与非还原糖的玻璃态形成过程。在干燥胁迫下,LEA 蛋白可形成 α-螺旋结构,继而形成微纤维。这不仅有助于增强细胞的机械稳定性,提高细胞质玻璃体的强度,增强细胞质粘滞性,抑制了有害分子在细胞内的扩散

### 3.与细胞膜结构的结合及对膜的稳定作用

- 转基因实验结果显示,转大麦HVA1基因的水稻经干旱胁迫后,细胞膜透性降低,表明过量表达的HVA1蛋白可通过保护细胞膜提高植株抗旱性.
- 胁迫发生时,线粒体基质中的LEA 蛋白也可保护线粒体内膜

### 4.结合金属离子

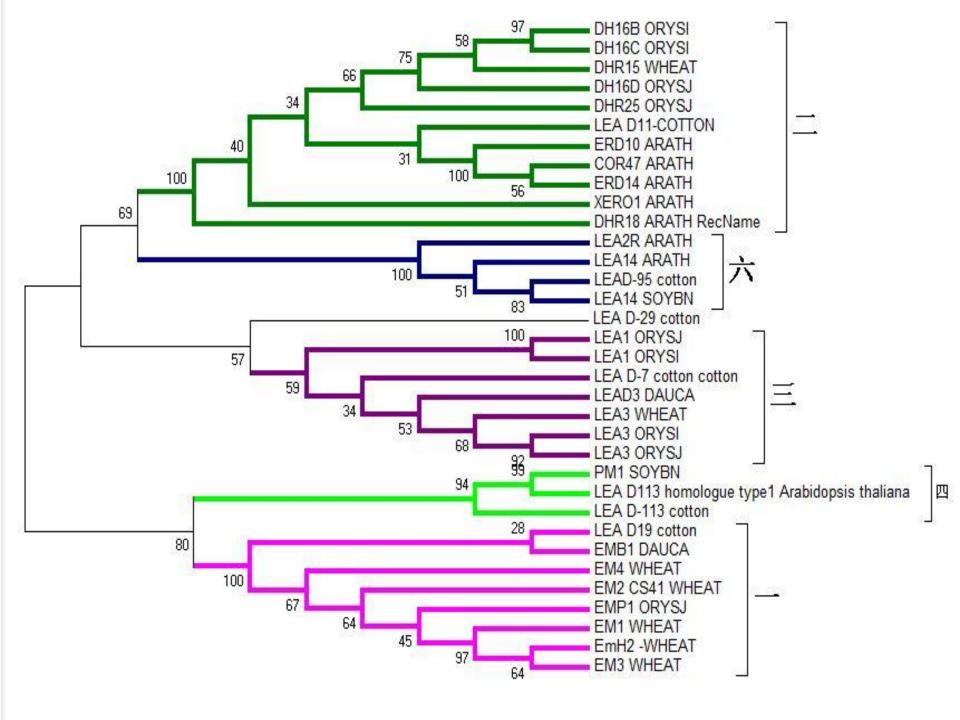
LEA 蛋白可螯合过多的 离子,减轻离子毒害, 这可能是LEA 蛋白的一 个重要功能.

#### 5.保护DNA

柑橘的COR15 蛋白在 Zn2+作用下可与DNA 和tRNA 发生非特异相 互作用。LEA 蛋白序列 中富含组氨酸和赖氨 酸的结构域可能在与 DNA 互作时起关键作 用。以上研究表明 CuCOR15 蛋白可能对 DNA/RNA有一定的保 护作用

### 研究目的

- 1验证LEA六个家族。
- 2 对水稻基因组数据库中的粳稻和籼稻 LEA蛋白进行结构预测和功能分析


# 研究方法与结果分析

### 研究方法

- 通过已克隆的棉花中的6个LEA蛋白氨基酸序列在 NCBI数据库中Blast搜索6种已经克隆的物种的LEA 蛋白质并构建系统进化树
- 在国家水稻数据中心分别检索籼稻和粳稻的基因 信息
- 在NCBI数据库检索出籼稻和粳稻的蛋白质序列,利用pepinfo、Tmap、PEPSTAT、porter等软件对该蛋白序列的组成成分进行分析,并进行二级结构预测
- 结果分析,探讨结构与功能的关系

### 6个物种的LEA蛋白分类

| 物种  | LEA D19 | LEA D11 | LEA D7 | LEA D113  | LEA D29 | LEA D95 | 种系   |
|-----|---------|---------|--------|-----------|---------|---------|------|
| 棉花  | LEA D19 | LEA D11 | LEA D7 | LEA D113  | LEA D29 | LEA D95 | 双子叶锦 |
|     |         |         |        |           |         |         | 葵目   |
| 大豆  |         |         |        | PM        |         | LEA14   | 双子叶豆 |
|     |         |         |        |           |         |         | 目    |
| 小麦  | EM      | DHR     | LEA3   |           |         |         | 单子叶禾 |
|     |         |         |        |           |         |         | 本目   |
| 水稻  | EMP1    | DH DHR  | LEA1   |           |         |         | 单子叶禾 |
|     |         |         | LEA3   |           |         |         | 本目   |
| 胡萝卜 | EMB1    |         | LEAD3  |           |         |         | 双子叶伞 |
|     |         |         |        |           |         |         | 形目   |
| 拟南芥 |         | ERD     |        | LEA D113  |         | LEA2R   | 双子叶十 |
|     |         | COR     |        | homologue |         | LEA14   | 字花木  |
|     |         | XER     |        | type1     |         |         |      |
|     |         | DHR     |        |           |         |         |      |



### • 结果分析:

- 1 由进化树可知所要研究的水稻LEA3, LEA1属于第三组,DH基因属于第二组,可 知LEA家族先进化再分化。
- 2 从进化树中也可看到可以看到,这六种植物的LEA蛋白也聚成了六类,6类蛋白根据其进化的顺序分类,与植物的氨基酸残基分类有一定的一致性。这六类蛋白中,第1类和第4类被聚成了一个亚类,第3类和第5类被聚成了一个亚类,第2类和第6类被聚成了一个亚类。

# 水稻基因组数据库中的籼稻LEA蛋白



晚期胚胎富集蛋白OsLEA1a 具有植物Em 蛋白类似的N 端序列,但是缺少典型Em 蛋白具有的20-mer 特征基序。OsLEA1a 主要在胚中表达,而在渗透胁迫处理的营养器官中没有或者只有很少的转录本存在。结构分析发现在溶液中OsLEA1a 蛋白具有大量无序构象,而干燥可以诱导蛋白构象改变。大分子互作分析表明OsLEA1a 与非还原糖和磷脂互作,而不能与多聚L- 赖氨酸相互作用。但是和其他组类的亲水性LEA 蛋白不同,OsLEA1a 不能行使分子伴侣功能(Shih et al. 2010)。

#### 【其它生物数据库关于本基因及产物的记载】

基因符号

所在染色体

OsLEAla

1 (已克隆)

NCBI GeneBank: AK064055, AK122153

RAP-DB: Os01g0159600 MSU: LOC\_Os01g06630

#### ·参考文献

 Ming-Der Shih; Lin-Tzu Huang; Fu-Jin Wei; Ming-Tsung Wu; Folkert A. Hoekstra; Yue-Ie C. Hsing OsLEA1a, a new Em-like protein of cereal plants Plant and Cell Physiology, 2010, 51(12): 2132-2144

#### 中国农业科学院作物科学研究所 | 中国水稻研究所

# 水稻基因组数据库中的粳稻LEA蛋白

基因



🚺 建议网站 🧾 网页快讯库



#### · 常规信息

| 基因(座)名称 | 晚期胚胎富集蛋白基因 Late embryogenesis abundant protein gene |
|---------|-----------------------------------------------------|
| 基因符号    | OsLEA3; OsLEA3-1                                    |
| 所在染色体   | 5 (已克隆)                                             |

OsLEA3-1 是OsLEA3 位点上的等位基因。干旱、盐和脱落酸等胁迫可诱导OsLEA3-1 的表达,但低温不能。带有合适启动子的OsLEA3-1 的过表达植株耐旱性 显著增强但产量不减(Xiao et al. 2007)。

#### 【其它生物数据库关于本基因及产物的记载】

NCBI GeneBank: DQ789359 RAP-DB: Os05g0542500 MSU: LOC Os05g46480

#### ·ONTOLOGY及相关基因

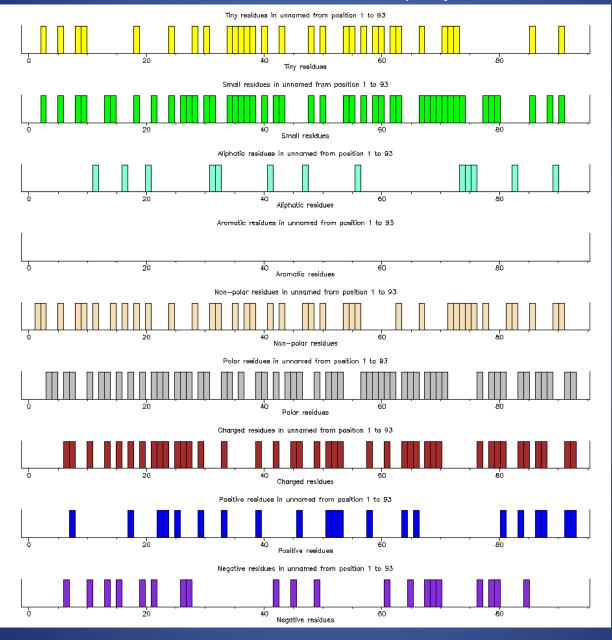
| 性状分类  | 抗旱(TO:0000276)                                           |  |  |  |
|-------|----------------------------------------------------------|--|--|--|
| 生物学过程 | 缺水胁迫反应(GO:0009414),脱落酸刺激响应(GO:0009737),盐胁迫响应(GO:0009651) |  |  |  |

#### ·参考文献

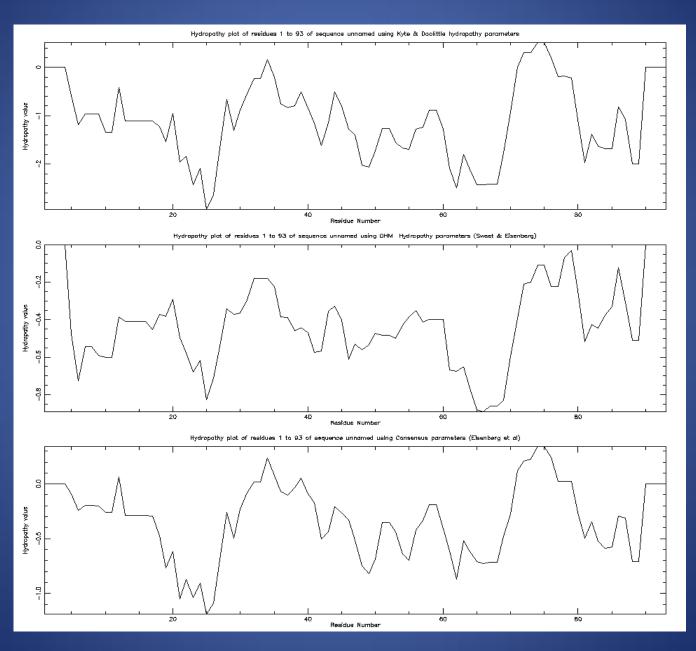
- Benze Xiao: Yuemin Huang: Ning Tang and Lizhong Xiong
   Over-expression of a LEA gene in rice improves drought resistance under the field conditions
   Theoretical and Applied Genetics, 2007, 115(1): 35-46
- 2. Ann Moons; Annick De Keyser; Marc Van Montagu

# 水稻基因组中LEA基因的氨基酸序列分析

late embryogenesis abundant protein [Oryza sativa Japonica Group]


GenBank: BAG88987.1

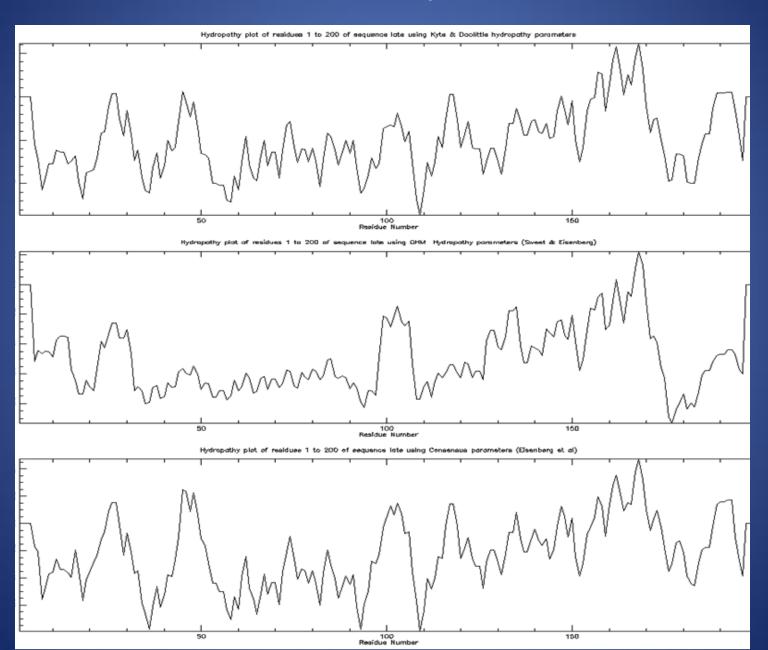
maqqaekaaelqdpeira eldrrarddgktviksgtggk sldaqerlaegrkkgglsrtt esgkeradddtgavliepd dkmlkeakknlgrk late embryogenesis abundant protein
[Oryza sativa Indica Group]


GenBank: ABG80549.1

mashqdqasyragetkahteekag qvmgaskdkaseakdraseaagh aagkgqdtkeatkekaqaakeras etaqaakdktsstsqaardkaaesk dqtggflgekteqakqkaaetagaa kqktaetaqytkdsaiagkdktgsvl qqaseqvkstvvgakdavmstlgm tedeagtddgankdtsataaatett ardh

#### 籼稻亚种的氨基酸组分分析结果(Pepinfo分析结果1)




#### 籼稻亚种LEA蛋白Pepinfo分析结果2



## 粳稻亚种LEA蛋白氨基酸组分分析



#### 粳稻亚种LEA蛋白Pepinfo分析结果2



# 两个亚种水稻LEA蛋白氨基酸 序列分析

#### Oryza sativa Japonica Group

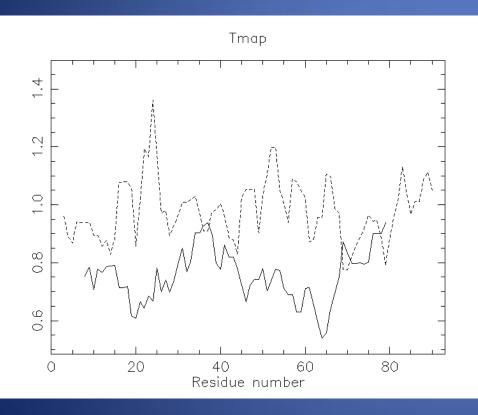
- Rice\_J.pepstats
- PEPSTATS of unnamed from 1 to 93
- Molecular weight = 10136.29 Residues = 93
- Average Residue Weight = 108.992 Charge = 1.0
- Isoelectric Point = 9.1021
- A280 Molar Extinction Coefficient = 0
- A280 Extinction Coefficient 1mg/ml= 0.00
- Improbability of expression in inclusion bodies = 0.631

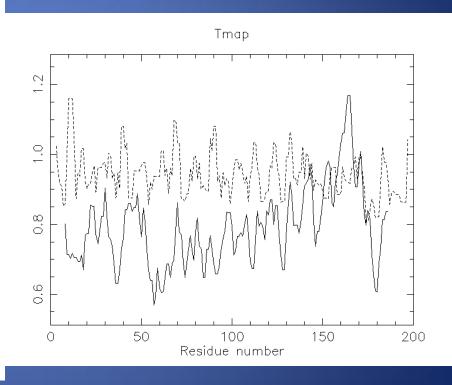
#### **Oryza sativa Indica Group**

- Rice\_I.pepstats
- PEPSTATS of late from 1 to 200
- Molecular weight = 20514.06Residues = 200
- Average Residue Weight = 102.570Charge = -1.0
- Isoelectric Point = 6.1524
- A280 Molar Extinction Coefficient =
   2560
- A280 Extinction Coefficient 1mg/ml= 0.12
- Probability of expression in inclusion bodies = 0.620

# 籼稻亚种LEA蛋白中氨基酸性质 分析

| Property  | Residues               | Number | Mole%   |
|-----------|------------------------|--------|---------|
| Tiny      | (A+C+G+S+T)            | 30     | 32. 258 |
| Small     | (A+B+C+D+G+N+P+S+T+V)  | 45     | 48.387  |
| Aliphatic | (A+I+L+V)              | 24     | 25.806  |
| Aromatic  | (F+H+W+Y)              | 0      | 0.000   |
| Non-polar | (A+C+F+G+I+L+M+P+V+W+Y | ) 38   | 40.860  |
| Polar     | (D+E+H+K+N+Q+R+S+T+Z)  | 55     | 59. 140 |
| Charged   | (B+D+E+H+K+R+Z)        | 41     | 44.086  |
| Basic     | (H+K+R)                | 21     | 22. 581 |
|           |                        |        |         |


## 粳稻亚种LEA蛋白中氨基酸性质 分析


| Property Res  | idues    | Number   |       | Mole%  |     |        |
|---------------|----------|----------|-------|--------|-----|--------|
| Tiny (A+      | -C+G+S+7 | Γ)       | 100   | 50.0   | 000 |        |
| Small         | (A+B+C   | +D+G+N+  | +P+S+ | -T+V)  | 122 | 61.000 |
| Aliphatic (A+ | I+L+V)   | 55       |       | 27.500 |     |        |
| Aromatic (F+) | H+W+Y)   | 7        |       | 3.500  |     |        |
| Non-polar     | (A+C+F-  | +G+I+L+N | M+P+  | V+W+Y  | 78  | 39.000 |
| Polar         | (D+E+H   | +K+N+Q+  | R+S-  | +T+Z)  | 122 | 61.000 |
| Charged       | (B+D+E-  | +H+K+R+  | -Z)   | 67     |     | 33.500 |
| Basic         | (H+K+R)  | )        | 34    | 17.0   | 000 |        |
| Acidic        | (B+D+E-  | +Z)      | 33    | 16.5   | 600 |        |

### 蛋白质跨膜螺旋分析结果(Tmap分析)

**Oryza sativa Japonica Group** 

**Oryza sativa Indica Group** 





# 粳稻亚种氨基酸序列二级结构 预测

GANKDTSATAAATETTARDH HHHHHHHHHHHCCCCCCCCC

# 籼稻LEA蛋白质序列二级结构 预测

ESGKERADDDTGAVLIEPDDKMLKEAKKNLGRK CCCCCCCCCCCCCCCCCHHHHHHHHHHCCCC

### 结果分析

- 1.两个蛋白质尽管序列长度,氨基酸组成不 尽相同,但是同样有很多相似之处,如, 极性氨基酸占到了序列组成中的大多数, 且α螺旋结构较多,推测这对于LEA蛋白发 挥抗逆功能有很大帮助
- 2.与籼稻LEA蛋白相比,粳稻LEA蛋白氨基酸数目,极性氨基酸数量,比例,α螺旋区更为丰富,推测这也是粳稻抗逆性比籼稻更强的原因之一。

