

NDV磷蛋白潜在功能性磷酸化 位点定位及其功能研究

汇报人: 汪军卿

小组成员: 汪军卿 曲昱蓉

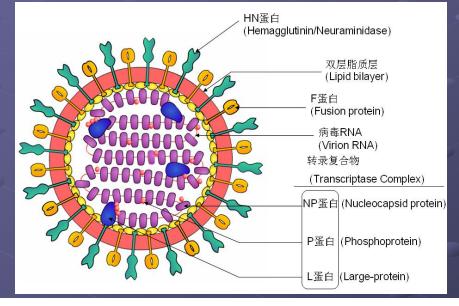
曹晓丹 韩 月

上海兽医研究所 2012.06.10

汪军卿:总体设计,结果分析, PPT制作,汇报

曲昱蓉:资料整理,基因序列分析等

曹晓丹: 氨基酸序列磷酸化位点测定, PPT修改等


韩月: La Sota株P蛋白潜在磷酸化位点分析及结果分析

汇报内容

研究背景 研究目的及意义 技术路线 实验进展及结果 参考文献 致谢

研究背景

新城疫(Newcastle Disease, ND)是由新城疫病毒(Newcastle disease virus, NDV)引起的对世界养禽业危害极为严重的一种传染病。新城疫病毒是副黏病毒科(Paramyxoviridae)、禽腮腺炎病毒属(Avulavirus)的唯一成员。

P蛋白是P基因编码的 三种蛋白产物中唯一参 与病毒复制的病毒蛋白, 也是RNA聚合酶的成份 之一

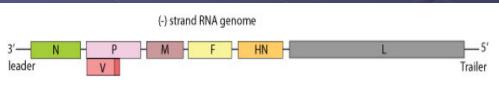


图1、NDV病毒粒子及基因组形态结构示意图 (引自Alexander et al., 1999)

研究背景

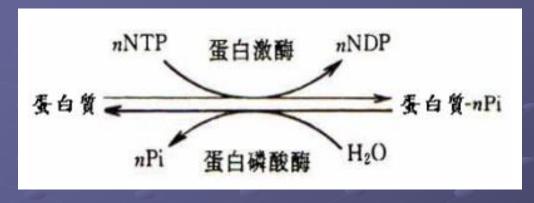


图3可逆磷酸化过程

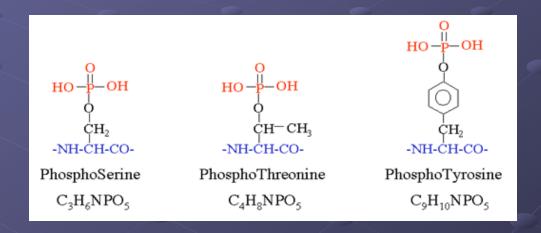
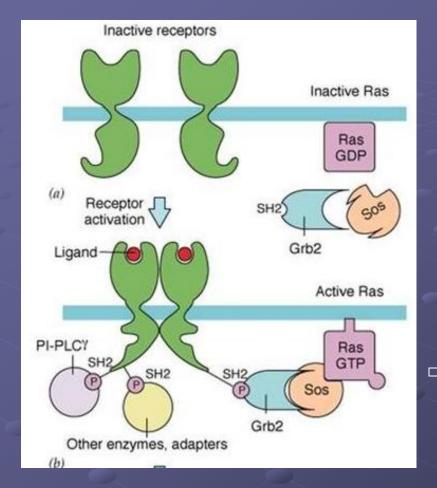



图4 丝氨酸/苏氨酸/酪氨酸的磷酸化形式

研究背景

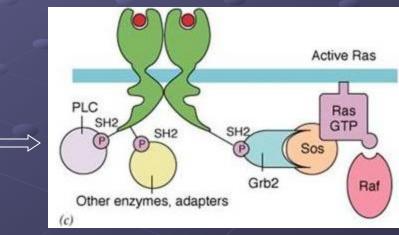


图5 Ras蛋白磷酸化引起的信号转导(引自John Wiley et al., 1999)

研究目的及意义

通过生物信息分析结合特异蛋白激酶抑制剂等实验,来筛 选出其中重要的功能性位点,并综合分析磷酸化对病毒复制和 转录过程的影响。

研究NDV在宿主细胞内的增殖调控和致病机理有重要的理论意义。

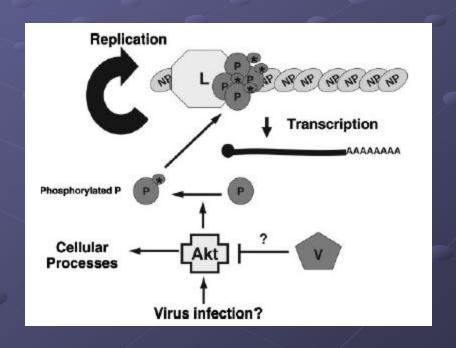
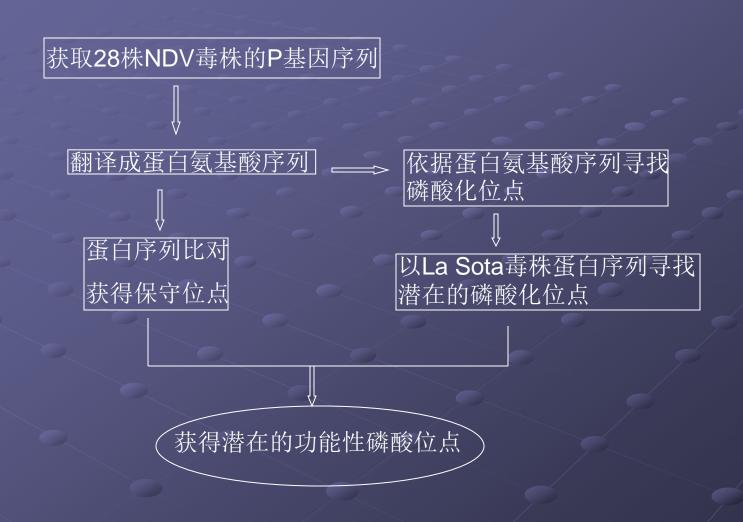



图6 副黏病毒P蛋白磷酸化水平对病毒基因组RNA合成的影响(引自 Sun M et al., 2008)

技术路线

注: 仅包括生物信息学部分。

1、NDV不同毒株序列分析

表1 文章中采用的基因组全长序列的EMBL/GenBank登录号

基因型 Genotype	毒株名称 Virus Strain	全基因序列登录号 Accession number
II-I	NDV isolate 01-1108	AY935489
II-I	NDV isolate 99-0655	AY935494
II-I	NDV strain PHY-LMV42	DQ097394
II-II	NDV AQI-ND026	DQ060053
II-II	NDV isolate I-2	AY935499
II-I	NDV isolate chicken/N. Ireland/Ulster/67	AY562991
II-II	NDV strain HB92 isolate V4	AY225110
II-II	NDV strain B1 isolate Takaaki	AF375823
II-II	NDV strain LaSota	AF077761
II-II	NDV cDNA to complete genomic RNA, clone 30	Y18898
II-II	NDV strain mallard/US(MN)/99-376/1999	GQ288389
II-III	NDV strain Mukteswar	EF201805
II-III	NDV HM	HM063425
II-IV	NDV strain Herts/33	AY741404
II-V	NDV isolate anhinga/U.S.(Fl)/44083/93	AY562986
II-V	NDV isolate mixed species/U.S./Largo/71	AY562990
II-VI	Pigeon paramyxovirus-1 strain AV324/96	GQ429292
II-VI	NDV isolate chicken/U.S.(CA)/1083(Fontana)/72	AY562988
II-VI	NDV isolate dove/Italy/2736/00	AY562989
II-VIII	NDV strain AF2240	AF284647

2、新城疫病毒P蛋白中保守性氨基酸位点分析 (DNAStar 7.0 版软件包, MEGA version 5)

10	20	30	40	50	60	70	80	90	100
E	-	V			S	-	T. S.1	ND ,	01-1108
									99-0655
									PHY-I MV42
E.			H					.DA.	AQI-ND026
E.		v	.		V.S		.LV	.D	CN/Ulster/67
E.				.v		N	T	.DA.	HB92 /V4
E.				.v		N	T	.DA.	B1/Takaaki
E.				.v		N	T	.DA.	LaSota
E.				.v		N	T	.DA.	clone 30
E.		v			.NS	NQ	HVI.	DGQ.TA.	.S US(MN)/99-376/19
		N.V			TG	M	PT		Mukteswar
		N.V			TG	M	PT		HM
									Herts/33
									PLLS U.S.(FI)/44083/93
									P U.S./Largo/71
									PL AV324/96
									PL U.S.(CA)/1083(Fon
									PL dove/Italy/2736/00
									PL AF2240
									P CN/Guangxi7/2002
									P CN/Guangxi9/2003
					.NANAQ.V.E.				AA.P DE-R49/99

图7 NDV毒株的P蛋白序列分析和比对结果(部分)

表2新城疫病毒P蛋白中保守性丝/苏/酪氨酸位点

类型 Type of residues	保守性位点 The conservative sites
Ser	16, 37, 48, 114, 125, 190, 193, 253, 254, 290, 291, 313, 328, 335, 354, 361, 367, 368, 369, 374, 381
Thr	5, 18, 44, 111, 210, 251, 267
Tyr	315

3 新城疫病毒La Sota毒株P蛋白潜在磷酸化位点的筛选



图8 Netphos 2.0 Server 分析La Sota毒株P蛋白中可被磷酸化的氨基酸位点

注: Netphos 2.0 Server磷酸化位点在线分析软件 (http://www.cbs.dtu.dk/services/NetPhos/)

	NetPhosK 1.0 Server - prediction results					
1	echnical Ur	niversity of Denmark				
		K without ESS filtering:				
Query:	LaSota					
Site	Kinase	Score				
T-5	CKII	0.66				
S-16	CKI	0.51				
T-18	PKC	0.63				
S-37	PKG	0.58				
T-44	cdc2	0.52				
S-62	DNAPK	0.62				
S-62	ATM	0.55				
S-72		0.79				
T-78	p38MAPK	0.53				
T-83	cdk5	0.63				
S-87	GSK3	0.51				
S-87	cdk5	0.60				
T-98	DNAPK	0.58				
T-111		0.58				
S-114		0.69				
S-116		0.55				
S-116		0.54				
S-125		0.81				
S-128		0.70				
S-129						
T-148	DNAPK	0.58				
T-148	ATM	0.52				
T-148						
S-153		0.64				
S-153						
S-153	PKC	0.62				
S-153	cdc2	0.52				

S-160	DNAPK	0.62
S-160	ATM	0.64
Y-183	EGFR	0.61
S-190	DNAPK	0.57
S-190	cdc2	0.59
S-193	CKI	0.53
T-197	p38MAPK	0.53
T-197	cdk5	0.61
S-203	PKG	0.55
S-206	DNAPK	0.64
S-206	ATM	0.52
S-206	PKA	0.73
T-210	cdc2	0.58
S-229	CKII	0.54
S-235	PKC	0.71
Y-243	INSR	0.51
T-267	PKC	0.60
T-267	cdc2	0.51
S-268	cdc2	0.56
S-291	DNAPK	0.60
5-291	PKA	0.58
S-293	cdc2	0.58
S-301	GSK3	0.50
S-313	cdk5	0.54
S-328	DNAPK	0.57
S-328	ATM	0.63
S-328	cdc2	0.58
S-361	GSK3	0.50
S-367	PKC	
S-369	PKC	
S-374	cdc2	
S-381	CKII	
S-381	CKI	0.51
Highest	Score:	0.81 PKC at position 125

图8 NetPhosK 1.0 Server分析La Sota毒株P蛋白中可被磷酸化的氨基酸位点注: NetPhosK 1.0 Server特异性磷酸激酶作用位点在线分析软件

(http://www.cbs.dtu.dk/services/NetPhosK/)

4 P蛋白磷酸化位点与结构功能的对应关系分析

表4 新城疫病毒P蛋白中保守的特异性蛋白激酶作用位点

	Serin	ne/ Threonine	e / Tyros	sine Kinase	
PKA	PKC	cdc2	PKG	CKI/CKII	Other
291		190, 210, 267, 328, 367	37	5, 16, 381	190, 313, 315, 328, 361, 374

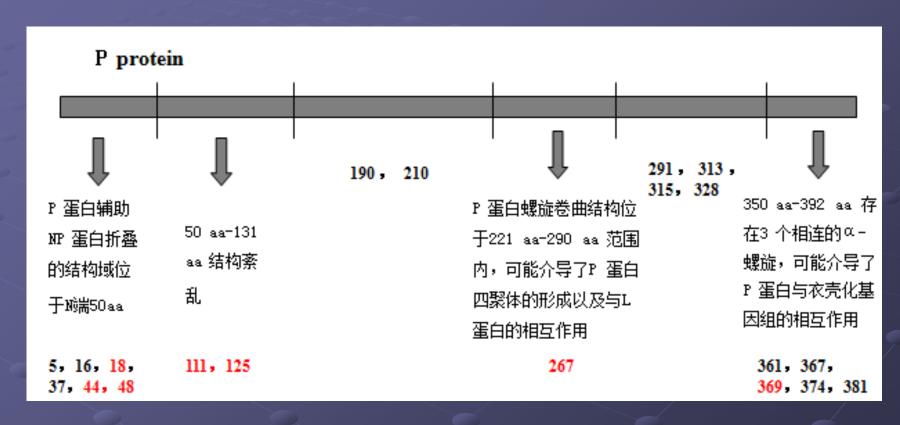


图9 P蛋白磷酸化位点与结构功能的对应关系

如上图将我们所得到的20个潜在的磷酸化位点与P蛋白的这四个功能结构域一一对应,结果发现唯一一个贯穿于所有结构功能域的磷酸化位点是PKC激酶作用位点。特别是在参与P蛋白自身四聚体形成和与L蛋白互作的区域和结构紊乱区内,预测出的磷酸化位点有且仅有PKC激酶的作用位点。

后续实验

后续我们讲通过实验手段来筛选功能性磷酸化位点!

参考文献

- [1] 孙英杰, 陈鸿军, 宋翠萍, 等. Class I NDV强毒株主要结构蛋白特异性抗体的研制[J]. 中国兽医科学, 2010, 40 (01): 34-40
- [2] 陈宏, 李荣清, 丁云霞, 等. PKC激活剂佛波酯PMA和抑制剂Staurosporine对大肠癌HT229细胞黏附作用的影响[J]. 实用癌症 杂志, 2005, 20 (1): 39-43
- [3] 仇旭升. 反向遗传技术研究新城疫病毒P基因功能及其对病毒毒力的影响[D]. 扬州大学, 2009.
- [4] Rahaman A, Srinivasan N, Shamala N, et al. Phosphoprotein of the Rinderpest virus forms a tetramer through a coiled coil region important for biological function[J]. J Biol Chem, 2004, 279 (22): 23606-23614.
- [5] Tanner S, Shu H, Frank A, et al. InsPecT: identification of posttranslationally modified peptides from tandem mass spectra[J]. Analytical Chemistry, 2005, 77 (14): 4626-4639.
- [6] Tarbouriech NJ, Ebel CC, Ruigrok KW, et al. On the domain structure and thepolymerization state of the Sendai virus P protein[J]. Virology, 2000, 266 (1): 99-109.
- [7] Wang Y, Klemke RL. PhosphoBlast, a computational tool for comparing phosphoprotein signatures among large datasets[J]. Mol Cell Proteomics, 2008, 7 (1): 145-162.
- [8] Xue Y, Li A, Wang L, et al. PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory[J]. BMC Bioinformatics, 2006, 7:163.
- [9] Lamb RA, Kolakofsky D. Paramyxoviridae: The viruses and their replication[J]. In Fields Virology (Fields B N, Knipe D M, Howley P M et al), 2001, 1305-1340.
- [10] James B. Bliska, Stanley, et al. The role of host tyrosine phosphorylation in bacterial pathogenesis[J]. Trends in Genetics, 1993, 9 (3): 85-89
- [11] Hamaguchi M, Yoshida T, Nishikawa K, et al. Transcriptive complex of Newcastle disease virus. Both L and P proteins are required to constitute an active complex[J]. Virology, 1983, 128 (1): 105-117.

注: 部分显示

致谢

首先感谢罗老师,在罗老师的指导下,一学期的生物信息学学习使我们初步掌握了相关软件的使用方法、技巧以及如何结合自己的课题进行分析,这将对我们以后的科研提供很大便利。

其次感谢小组各位成员,在每周一次的讨论中,我们 共同学习,一起商量和解决问题,各方面都有很大的提 高。在这次汇报的完成过程中,大家集思广益,齐心协 作,大量搜索和收集资料,在小组成员的共同努力下, 此次汇报顺利完成。

谢谢!

Serine	predictions
	L

		-		
Name	Pos	Context	Score	Pred
		v		
LaSota	16	LFETSGTVI	0.155	.
LaSota	37	TVGRSAIPQ	0.361	
LaSota	48	TKVLSAAWE	0.745	*S*
LaSota	56	EKHGSIQPP	0.007	
LaSota	62	QPPASQDNP	0.991	*S*
LaSota	72	RQDRSDKQP	0.987	*S*
LaSota	77	DKQPSTPEQ	0.994	*S*
LaSota	87	TPHDSPPAT	0.983	*S*
LaSota	92	PPATSADQP	0.743	*S*
LaSota	114	RTGASNSLL	0.014	
LaSota	116	GASNSLLLM	0.006	
LaSota	125	LDKLSNKSS	0.832	*S*
LaSota	128	LSNKSSNAK	0.531	*S*
LaSota	129	SNKSSNAKK	0.006	
LaSota	137	KGPWSSPQE	0.274	
LaSota	138	GPWSSPQEG	0.615	*S*
LaSota	153	QQQGSQPSR	0.262	
LaSota	156	GSQPSRGNS	0.395	
LaSota	160	SRGNSQERP	0.996	*S*
LaSota	190	QWEESQLSA	0.079	
LaSota	193	ESQLSAGAT	0.971	*S*
LaSota	203	HALRSRQSQ	0.394	
LaSota	206	RSRQSQDNT	0.991	*5*
LaSota	213	NTLVSADHV	0.012	
LaSota	229	QAMMSMMEA	0.839	*S*
LaSota	235	MEAISQRVS	0.972	*S*
LaSota	239	SQRVSKVDY	0.997	*S*
LaSota	253	LKQTSSIPM	0.076	
LaSota	254	KQTSSIPMM	0.045	
LaSota	260	PMMRSEIQQ	0.121	
LaSota	268	QLKTSVAVM	0.154	
LaSota	290	CANISSLSD	0.009	
LaSota	291	ANISSLSDL	0.475	
LaSota	293	ISSLSDLRA	0.612	*S*
LaSota	301	AVARSHPVL	0.537	*S*
LaSota	307	PVLVSGPGD	0.017	
LaSota	313	PGDPSPYVT	0.935	*S*

	Threonine predictions			
Name	Pos	Context V	Score	Pred
LaSota	3	MATFTDA	0.152	.
LaSota	5	MATFTDAEI	0.047	
LaSota	15	ELFETSGTV	0.083	
LaSota	18	ETSGTVIDN	0.136	
LaSota	25	DNIITAQGK	0.028	
LaSota	33	KPAETVGRS	0.551	*T*
LaSota	44	PQGKTKVLS	0.213	
LaSota	78	KQPSTPEQT	0.810	*T*
LaSota	82	TPEQTTPHD	0.667	*T*
LaSota	83	PEQTTPHDS	0.980	*T*
LaSota	91	SPPATSADQ	0.340	
LaSota	98	DOPPTOATD	0.048	
LaSota	101	PTQATDEAV	0.176	
LaSota	107	EAVDTQFRT	0.942	*T*
LaSota	111	TQFRTGASN	0.008	
LaSota	148	HQRPTQQQG	0.179	
LaSota	177	GNQGTDVNT	0.138	
LaSota	181	TDVNTAYHG	0.055	
LaSota	197	SAGATPHAL	0.632	*T*
LaSota	210	SQDNTLVSA	0.371	
LaSota	252	VLKQTSSIP	0.142	
LaSota	267	QQLKTSVAV	0.091	
LaSota	317	SPYVTQGGE	0.362	
LaSota	342	IKPATACGP	0.287	
LaSota	354	VEKDTVRAL	0.875	*T*

Tyrosine predictions						
Name	Pos	Context v	Score	Pred		
LaSota	183	VNTAYHGQW	0.062			
LaSota	243	SKVDYQLDL	0.649	*Y*		
LaSota	315	DPSPYVTQG	0.851	*Y*		
		^				

注: NetPhosK 1.0 Server特异性磷酸激酶作用位点在线分析软件 (http://www.cbs.dtu.dk/services/NetPhosK/)