耐酸高温α-淀粉酶的分子设计及在芽孢杆菌中的分泌表达

报告人: 余小霞

组号: G11

组员: 张丰华、李哲、梁蒙、余小霞

报告内容

- 一、研究背景
- 二、生物信息分析策略
- 三、实验方案

一、研究背景

• 1.1.1淀粉酶的分类

表 1-1 常见淀粉酶分类

Table 1-1 Classification of common Amylase

	淀粉酶	来源	作用位点	水解底物	产物
液化酶	α-淀粉酶	枯草芽孢杆菌 曲霉 大麦等植物	水解分子间的 α-1,4-糖苷键	淀粉	糊精,低聚糖葡萄糖
	β-淀粉酶	芽孢杆菌类	从非还原末端每隔 两个单位水解 α-1,4-糖苷键	淀粉	麦芽糖
糖化酶	葡萄糖淀粉酶	真菌类	从非还原性末端水解 α-1,4-糖苷键、α-1,6-糖苷 键以及 α-1,3-糖苷键	淀粉	葡萄糖
	脱支酶	微生物	α-1,6-糖苷键	支链淀粉 糖原 普鲁兰糖	麦芽三糖 麦芽糖 直链淀粉

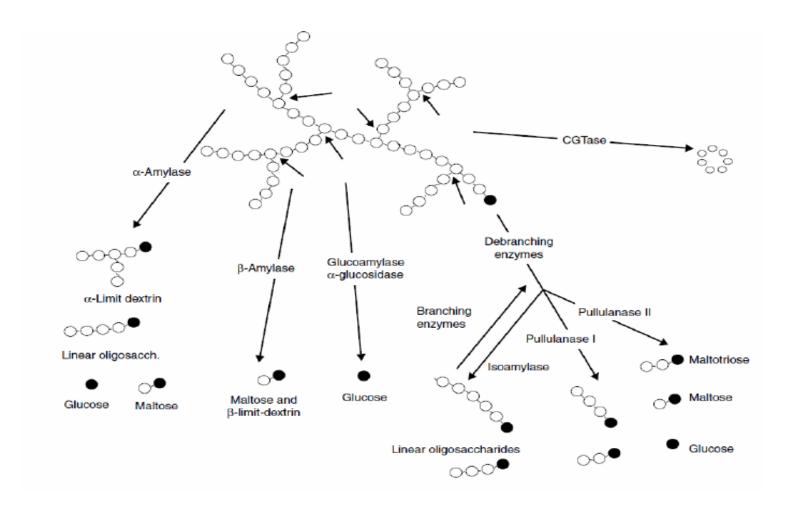


图 1-1 根据淀粉酶的作用淀粉的方式分类[3]

Fig. 1-1 Classification of amylase according into the mode of action^[3] Gupta R, Gigras P, Mohapatra H, et al. Microbial alpha-amylases: a biotechnological perspective[J]. Process Biochem, 2003, 38:1599-1616

· 1.1.2 α −淀粉酶

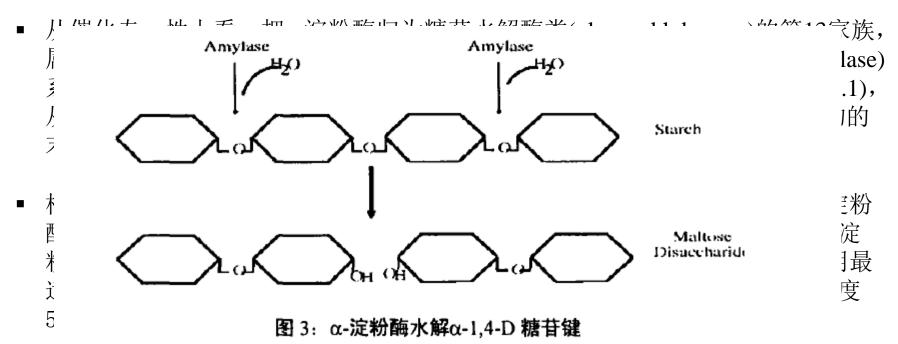


Fig. 3 α-amylase hydrolyzes α-1,4 linkage

■ 根据a一定粉酶作用的最适pH和对酸帧的稳定性, 把a一定粉酶分成酸性a一定粉酶、中性a一淀粉酶和碱性a一淀粉酶。大多数a-淀粉酶都属于中性a-淀粉酶, 一般最适pH6.0-7.0, 酸性a一淀粉酶最适pH<5.5, 碱性a一淀粉酶最适pH>8.0。

淀粉酶中以α-淀粉酶应用最为广泛,已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。

表 1-1 α-淀粉酶的工业用途

Table 1-1 The industrial application of α-amylase			
用途	说明		
淀粉加工工业	制造麦芽糖浆		
	制造饴糖		
	制造葡萄糖		
	制造各种粉末糊精		
	制造各种浆糊、粘着剂		
酿造发酵工业	啤酒原料液化		
	酒精原料糖化、液化		
	酱油醋原料处理		
	其它以淀粉为原料的发酵工业中淀粉的液化		
纺织品工业	各种纺织物退浆		
面包工业	改善质量风味,缩短时间,节约用糖		
医药工业	消化药、诊断试剂		
饲料工业	与其他酶一起添加促进消化		
其他	香料加工、造纸、石油压裂、果汁制造		

· 1.1.3 工业应用对α-淀粉酶的要求

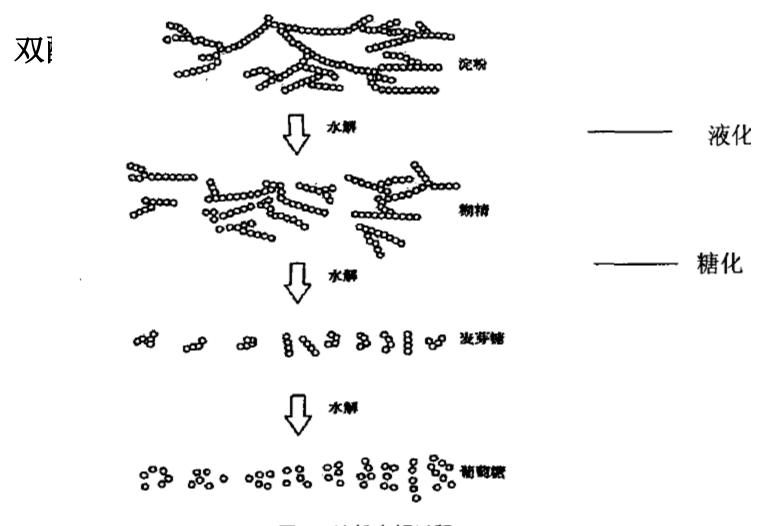


图 2: 淀粉水解过程

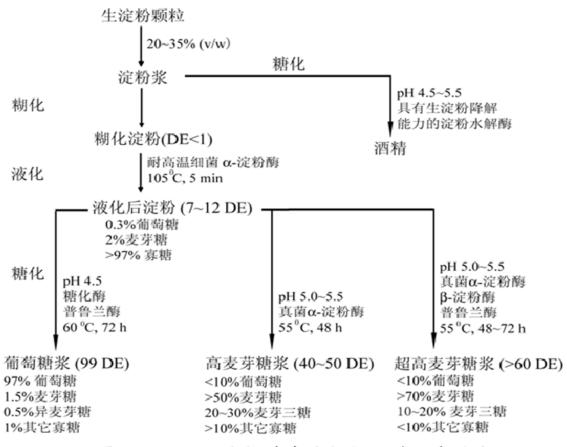


图 1-8 不同α-淀粉酶在淀粉加工过程中的应用

Fig. 1-8 The application of α -amylases in the processing of starch

要求	量化	1 对现有α-淀粉酶的改性
1高温解决方案	105°或更高?	110℃喷射液化能使绝大部分淀粉糊化分解,但是仍有少量的淀粉颗粒需要在更高的温度下才能破裂,有些存在于细胞内的淀粉需要在135℃以上,细胞壁破裂后才能释放,另外高温还有利于蛋白质的进一步凝集。采用更高的液化温度有利于提高淀粉的利用率,更重要的是能提高糖液质量,更好适应对糖液质量要求高的工
2 低最适pH和更 好的酸稳定性	最适pH在4.5 左右	2从微生物中寻找新的α-淀粉酶。
3低或无钙离子依赖。		减少环节,降低成本,避免污染。

表 4: 商业化的α-淀粉酶酶制剂的性质和用途对比

Table 4 Comparision of characterization and application among commercial α -amylases

类型	酶学性质	应用
耐高温	稳定 pH5.0-10.0, 有效 pH5.0-8.0, 最适 pH5.5-7.0, 最佳	应用历史早,产量大,应用
α-淀粉酶	pH6.0-6.2; 最适作用温度范围 95-105℃, 最佳温度 100℃。	在淀粉糖生产、味精生产、
	不耐酸,在酸性条件 (pH <5.0) 时,活性较低,在室温-50	啤酒和酒精生产中辅料的加
	℃,活性较低,高温条件下(>100℃)活性丧失快,一般	工、织物退浆、以及其它酿
	需要 Ca ²⁺ 。	造、有机酸和医药行业。
高效耐高温	最适 pH 范围 5.0-7.0, 最佳 pH 范围 6.0-6.2; 最佳温度 105	能够替代一般的耐高温α-淀
α-淀粉酶	℃,最适作用温度 95-110℃。相对一般的耐高温α-淀粉酶,	粉酶。
	具有高比活性,高热稳定性,较宽的最适 pH 范围,低 pH	
	稳定性提高,对 Ca ²⁺ 需要浓度低的特点。对不同来源的原	
	料,即使淀粉含量很低,也能有很好的降解效果。	
碱性	稳定性极好, 在 pH7-10 范围内, 特别是当 pH 超过 10 时,	洗涤剂
α-淀粉酶	仍能表现出活性, 最适 pH 范围 5.0-8.5, 易于保存不易失	
	活。最适温度在 60℃左右,在 20-100℃范围内,都能表现	
	出活性。	
中温	在 60℃以下较稳定,最适作用温度 60-70℃,90℃以上时	淀粉糖生产、味精生产、啤
α-淀粉酶	失活很快; 在 pH6.0-7.0 较稳定,最适作用 pH6.0, pH5.0	酒和酒精生产中辅料的加
	以下失活很严重。	工、织物退浆、以及其它酿
		造、有机酸和医药行业。
耐酸性	有中温型和耐高温型两种,最适 pH 范围 pH4.0-5.5, 在酸	尚处于开发阶段,商品化的
α-淀粉酶	性条件下 pH3.5-7.0 稳定性较好, 但是可用 pH 范围差别较	较少。可能应用淀粉糖工业、
	大。	酿酒及其它发酵行业。

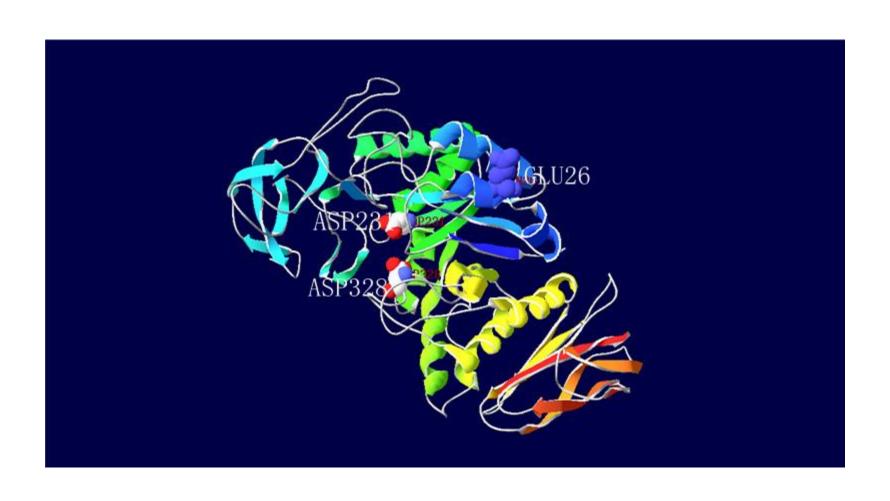
二、生物信息分析策略

- 1、alpha-amy蛋白序列的获取和信息
- 2、alpha-amy三级结构的预测和功能位点的分析
- 3、信号肽跨膜结构域的分析
- 4、家族基因的系统发育

目的:推测高温淀粉酶和中温淀粉酶是否影响酶活性的差异位点。

1、alpha-amy蛋白序列的获取和信息

基因来源: Bacillus licheniformis


• 登录号: P06278

• 基因大小: 512个aa

• 氨基酸序列:

MKQQKRLYARLLTLLFALIFLLPHSAAAAAANLNGTLMQYFEWYMPNDG QHWKRLQNDSAYLAEHGITAVWIPPAYKGTSQADVGYGAYDLYDLGEF HQKGTVRTKYGTKGELQSAIKSLHSRDINVYGDVVINHKGGADATEDVT AVEVDPADRNRVISGEHRIKAWTHFHFPGRGSTYSDFKWHWYHFDGT DWDESRKLNRIYKFQGKAWDWEVSNENGNYDYLMYADIDYDHPDVA AEIKRWGTWYANELQLDGFRLDAVKHIKFSFLRDWVNHVREKTGKEMF TVAEYWQNDLGALENYLNKTNFNHSVFDVPLHYQFHAASTQGGGYD MRKLLNSTVVSKHPLKAVTFVDNHDTQPGQSLESTVQTWFKPLAYAFIL TRESGYPQVFYGDMYGTKGDSQREIPALKHKIEPILKARKQYAYGAQHDY FDHHDIVGWTREGDSSVANSGLAALITDGPGGAKRMYVGRQNAGET WHDITGNRSEPVVINSEGWGEFHVNGGSVSIYVQR

2、alpha-amy三级结构的预测和功能位点的分析

· α-淀粉酶的结构和催化性质

- 对细菌α-淀粉酶 X 光衍射研究表明, 细菌来源的α-淀粉酶都具有相对保 守的结构特征,含有3个结构域 A、 B、C。
- 结构域 A 由(α/β)₈TIM 桶状结构、N 端和活性位点组成,具有酶催化反 应活性中心区域(图1-2 绿色)。
- 结构域 B由不规则 β 片层结构组成, 结构上具有高度变异性,主要是底 物结合区域,决定不同底物结合的 特异性(图 1-2 紫红色)。
- 结构域 C 在结构域 A 的外面,含有 C端(图 1-2 蓝绿色)。希腊钥匙 结构。
- 大部分已知的 α-淀粉酶在结构域 A 和 B 之间都含有保守的Ca²+, 对于酶的稳定性和活性起重要作用。

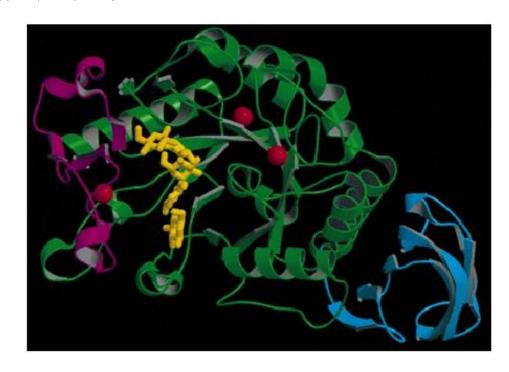


图 1-2 α-淀粉酶的三维结构模型[5]

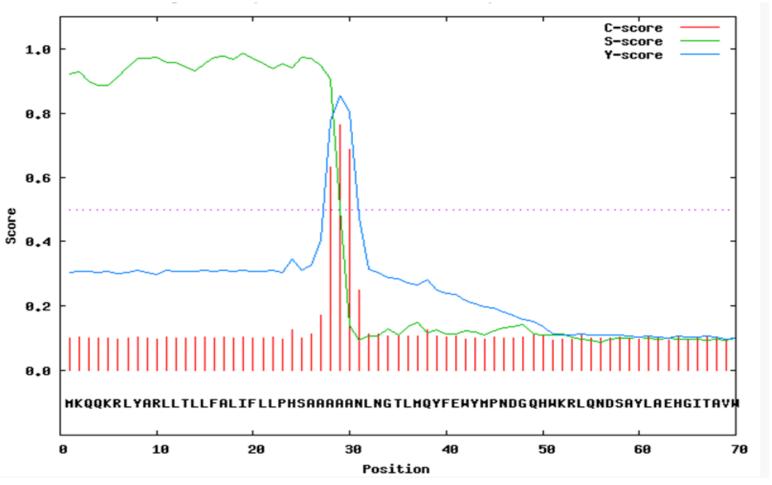
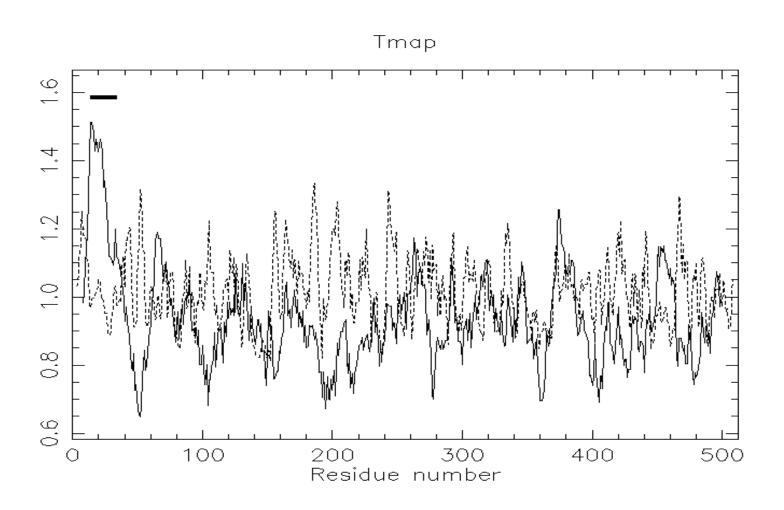
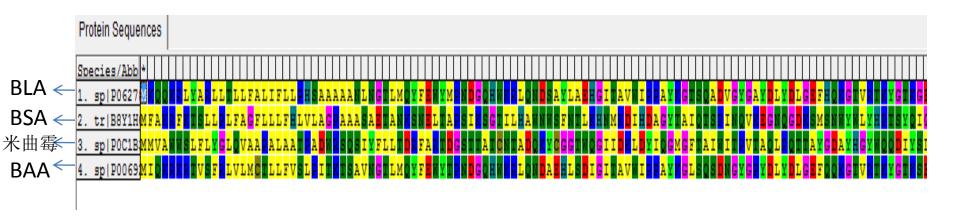

酶的稳定性和活性起重要作用。 MacGregor EA, Janecek S, Svensson B. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes[J]. Biochim Biophys Acta,2001, 1546:1-20 • 根据目前得到的研究结果,认为结构域C不决定a-淀粉酶的催化专一性,但能影响a一淀粉酶的比活

表 11: C-端部分氨基酸缺失对α-淀粉酶 BSTA 功能的影响 Table 11 Effect of removal of C-terminal parts on α-amylase BSTA

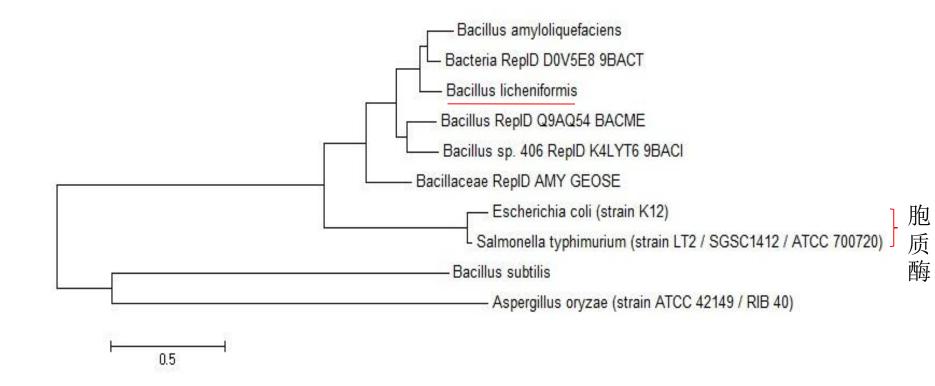
	野生型	突变体	本		
肽链氨基酸数	515	422	468	483	498
缺失氨基酸数		32	47	73	93
比活 <i>U</i> /mg	7190	no	no	2583	7018
Km	1.09	no	no	0.35	0.21


3、信号肽和跨膜结构预测

信号肽预测


SP='YES' Cleavage site between pos. 28 and 29: AAA-AA

跨膜预测



4、家族基因的系统发育

四个高温淀粉酶序列比对结果

系统发育树

· 现有对 a - 淀粉酶耐热耐酸机理的研究

- Suzuki等研究发现Glu178附近和255-270两个区域对BLA的热稳定性起关键作用。 Conrad等的研究则发现了四个重要区域:34-76,112-142,174-179和263-276,其中两个区域与Suzuki等的研究一致。
- 对构建热稳定性更高的BLA突变株最有直接贡献的可能是Declerck等和Joyet等的研究结果。通过十多年的研究,Deelerck等人共构建了500多株BLA单个或多个氨基酸发生突变的菌株。结合蛋白质结构进行突变分析,发现了一些有意思的规律。
- 1 如把钙离子结合位点的氨基酸替换掉会使蛋白质的稳定性大大降低;
- 2 热稳定性的提高并不一定意味着酶的活性会降低;
- 3性能的改变往往具有累积效应,但并非所有情况下都是。
- 具体的点突变效果见表1.1。

Suzuki Y, Ito N, Yuuki T et.al. Amino acid residues stabilizing a Bacillus a-amylase against irreversible thermoinaetivation. JBiolChem, 1989, 264(32):18933—18938.

Conrad B, Hoang V, Polley A, et al. Hybrid Bacillus amlyloliquefaeiens X Bacillus Licheniformis a-amylases. Construction, propertie sand sequence determinants. Eur JBioehem, 1995, 230(2):481—490.

表 1.1 改进 BLA 性能的突变

突变	效果	文献
H133Y	稳定性提高	[19]
H133I	稳定性提高	[24]
N190F	稳定性提高	[10,16]
A209V	稳定性提高	[20]
H133Y+A209V	北野生的BLA提升 了23°	[20]
Q264S+N265Y	稳定性提高	[10,16]
H133I+N190F+A209V+Q264S+N265Y	稳定性提高	[23]
H133I+H156Y+A181T+N190F+A209V+Q26	4S+N265Y 稳定性提高	[23]
H156Y+A209V+A181T	稳定性提高,低 Ca ²⁺ 依赖	[10,25]
A209V+H156Y+A181T+Q264S+N190F	稳定性提高,低 Ca ²⁺ 依赖	[10,25]
N104D	适应低 pH 条件	[26]
R437L+Y439F	适应低 pH 条件	[27]
R437W	在pH4.5酶活明显高于 BLA	野生型
Y439F	近座版 pH 条件	[27]

遇到的问题

在蛋白数据库里没有搜到足够的高温淀粉酶和中温淀粉酶的序列,从而无法比对这两种淀粉酶序列特有位点的差异?

三、实验方案

本研究将利用定点突变,饱和突变,蛋白模块重组和基于保守区的分子重排获得我们所需的基因材料,再将目的基因利用已经建立或已发表的遗传转化方法将他们转化到3种芽孢杆菌,通过酶活测定,性质评估,反馈做进一步分子改良,最终得到能够实现高效表达耐酸高温a-淀粉酶的生产菌株。

谢谢大家!