The evolutionary genomics of domestication

--An example from rice

Zhu Qihui

Evolutionary genetics of domestication: phylogeography

- **4** Based on 'neutral' molecular markers,
- Genotype a large sample of domesticates and their wild relatives
- Where did domestication occur?
- **How often was a species domesticated?**
- When was the species domesticated?

Example: Einkorn wheat

- Domesticated in the Karacada mountains (southeast Turkey)
- Single domestication event
- Archaelogical evidence suggests domestication ~9600 YBP

Heun et al., 1997 Science 278:1312

Example: Maize Domestication

- 99 SSR loci
- 193 maize
- accessions
- teosinte
- Zea mays ssp. mexicana
- Zea mays ssp.
- parviglumis

Matsuoka et al. (2002) Proc. Natl. Acad. Sci. USA 99, 6080-6084

Phylogeographic Study of Maize Domestication

- Single Domestication event
- Domesticated from *Z. mays* ssp. *parviglumis*
- Location: Mexican highlands
- Time: ~9000 YBP

Archaelogy ~6000 YBP

Matsuoka et al. (2002) Proc. Natl. Acad. Sci. USA 99, 6080-6084

domesticated crops and animals are <u>not</u> like their wild progenitors

in the wild, the pods open naturally and the seeds fall off, since that is how the plant is meant to reproduce; but in a domesticated crop, the pods must remain shut or there is nothing for us to eat

seed shattering

Rice domestication by reducing shattering

An SNP caused loss of seed shattering during rice domestication

ABI3 family

Kinishi et al 2006, Science, 312:1392-1396

Evolutionary genetics of domestication: *fw2.2*

- 300-fold difference in fruit weight between wild and cultivated tomato
- QTL studies based on wild X cultivated cross

Frary et al., Science 2000 289:85

Evolutionary genetics of domestication: maize

- Inflorescence architecture
- Seed coat
- Plant architecture

www.panzea.org

TCP family-*teosinte branched 1 (tb1)*

Doebley *et al.*, *Nature* 1997 386, 485 - 488 Wang *et al.*, *Nature* 1999 398:236

SBP family -*teosinte glume architecture 1 (tga 1)*

Wang et al., Nature 2005: 714-719

Only 2-4% of genes have been subjected to artificial selection in maize genome

www.panzea.org

Wright et al.Science,2005,308:1310-1314

An example from rice

Normile & Pennisi. Science, Apr 5, 2002: 32-36

progenitors of cultivated rice

O.rufipogon

O.nivara

Pictures from:www.knowledgebank.irri.org/wildRiceTaxonomy

Habitat of O. rufipogon and O. nivara

Vaughan DA. 1989. The wild relatives of rice

Genetic bottlenecks imposed on crops during domestication and through modern breeding practices

Tanksley & McCouch. 1997. Science: 1063-1066

Cultivated rice sampling

Sampling of wild rice

Extent of the regions analyzed

Locus	Chromosom	Total	Coding	Non-coding
	е		(bp)	(bp)
Adh1	11	853	0	853
CatA	2	610	0	610
Cbp1	12	824	317	507
GBSSII	7	624	139	485
Ks1	4	941	481	460
Lhs1	3	1057	161	896
Os0053	2	738	149	589
SSII	10	917	73	844
TFIIA γ-1	1	971	75	896
Waxy	6	544	179	365
Total		8079	1574	6505

Methods

- cultivated rice: PCR sequencing
- wild rice: PCR sequencing

Cloning and sequencing

Comparison of nucleotide diversity of the cultivated and wild rice at ten loci

constraint analysis

Tree	-InL	Diff - InL	Р	Significantly worse
Best ML-tree	16044			
indica	17736	1692.03	<0.001	Yes
japonica	17212	1167.98	<0.001	Yes
rufipogon	17852.2	1808.21	<0.001	Yes
nivara	17872.4	1828.46	<0.001	Yes

Coalescent simulation

severe bottleneck in rice

 π

The severity of bottleneck in rice domestication

Conclusions

- Wild populations are crucial for understanding domestication
- Studies of domestication phylogeography are common, and answer the question "Where?"
- nucleotide variation

wild rice: comparable levels of other wild species cultivated rice: low, only 20% to 10% of the wild species

 coalescent simulation detected a severe domestication bottleneck and demonstrated only 1500 individuals in the founding population if the initial domestication event occurred over a 3000-year period

2007-01-14

