Play with
 Phylogenetic Trees

Ge Gao and Xiying Wang
Center of Bioinformatics, PKU 2005-12-31

Outline

- What's Phylogenetic Trees?
- Build Phylogenetic Trees by Distance Methods
- Validate Phylogenetic Trees by Re-sampling
- Rock with PHYLIP

©1999 Addison Wesley Longman, Inc.

Phylogenetic Trees

- Phylogenetics is the study of evolutionary relationships among organisms
- A phylogenetic tree or phylogeny for a set of taxa (species, genes, ...) is an evolutionary tree representing their relationships.
- A tree is an acyclic graph: horizontal transfer is ignored
- Edge weights may represent distance in evolution

Phylogenetic Trees

- Trees can be rooted or unrooted.
- In the case of unrooted trees we can assume to have not enough data to determine the root of the tree
- The leaves of a phylogenetic tree usually represent the present day taxa, the internal nodes represent hypothesized ancestors.

Tree Topology

Why Phylogenetic Trees?

\square Evolution of organisms (tree of species)

Evolution of genes (tree of gene)

- Application:
- Comparative Genomics
- Gene function prediction

Models and Methods

- Model: an abstract of "real" evolutionary events.
- Maximum Parsimony methods
- Distance Matrix methods
- Maximum Likelihood methods

Which is better?

Maximum Parsimony

- Variation is small
- All possible trees are evaluated
- <=11 or 12 sequences concerned
- Time-consuming
- Concensus tree for more than one MP trees

Distance Matrix methods

- Variation is intermediate
- Hierarchical inference
- Rather faster then MP.
- Large number of sequences
- The distance matrix can be derived from multiple alignment or evolution event or others like K-tuple method

Maximum Likelihood

- Variation could be some larger
- All possible trees are evaluated
- <=11 or 12 sequences concerned
- Both topology and edge lengths are considered.
- based on probability inference.

$$
P\left(x^{\bullet} \mid T, t_{\bullet}\right)
$$

How many possible trees?

Rooted tree $\frac{(2 m-3)!}{2^{m-2} \cdot(m-2)!} \quad \mathrm{m}=10: 1034,459,425$

Unrooted tree $\frac{(2 m-5)!}{2^{m-3} \cdot(m-3)!} \quad \begin{aligned} & \mathrm{m}=10 \text { : } \\ & 2,027,025\end{aligned}$

A Quick Summary

	MP	DM	ML
Variation	+	++	+++
Computation Complex	++	+	+++
Edge Length Estimation	N	N	Y
Flexibility	+	+++	++

A General Protocol

Outline

What's Phylogenetic Trees?

- Build Phylogenetic Trees by Distance Methods
- Validate Phylogenetic Trees by Re-sampling
- Rock by PHYLIP

Distance Methods

- Neighbors - the closest taxa
- Rather fast
- More reliable than MP when branch lengths vary (Jin and Nei, 1990; Swofford et al. 1996)
- Additive: the lengths be additive

Neighbors Joining

- Proposed by Saitou and Nei in 1987
- Pearson et al. enhance NJ in 1999 (Not a single tree predicted)
- Pairing sequences based on the effect of the pairing on the sum of the sum of the branch lengths of the tree
- Starting from a star-like tree

Similarity to Distance

- Convert alignment scores to distances:

$$
D=-\log S_{e f f}=-\log \left\{\left(S_{\text {obs }}-S_{\text {rand }}\right) /\left(S_{\max }-S_{\text {rand }}\right)\right\}
$$

$S_{o b s}$ is observed pairwise alignment score
$\mathrm{S}_{\text {max }}$ is the maximum score, the average of the score of aligning either sequence to itself.
$S_{\text {rand }}$ is the expected score for aligning two random sequences of the same length and residue composition, which can be calculated by random shuffling of the two sequences or by an approximate calculation given in Feng \& Doolittle[1996]

Neighbour Joining Algorithm

- For each node i the distance from the rest of the tree is estimated by

$$
r_{i}=\frac{1}{N-2} \sum_{k \neq i} d_{i, k}
$$

- Choose the nodes i and j that for which

$$
D_{i j}=d_{i j}-r_{i}-r_{j} \text { is smallest }
$$

join i and j (ij is new node)

- Compute branch length from i and j to ij

$$
d_{i,(i j)}=\frac{1}{2} d_{i, j}+\frac{1}{2}\left(r_{i}-r_{j}\right), d_{j,(i j)}=\frac{1}{2} d_{i, j}+\frac{1}{2}\left(r_{j}-r_{i}\right)
$$

- Compute the distances between the new cluster and each other cluster:

$$
d_{(i j), k}=\frac{d_{i, k}+d_{j, k}-d_{i, j}}{2}
$$

Neighbour joining algorithm(1)

	A	B	C	D	E	F	G	r_{i}
A		63	94	111	67	23	107	88.4
B	63		79	96	16	58	92	80.8
C	94	79		47	83	89	43	87
D	111	96	47		100	106	20	96
E	67	16	83	100		62	96	84.4
F	23	58	89	106	62		102	88
G	107	92	43	20	96	102		92

Start from the star-like tree
Calculate r_{i}

Neighbour joining algorithm(2)

	A	B	C	D	E	F	G	r_{i}
A		-106.2	-81.4	-73.4	-105.8	-153.4	-69.4	88.4
B	63		-88.8	-80.8	-149.2	-110.8	-80.8	80.8
C	94	79		-136	-84.4	-86	-136	87
D	111	96	47		-80.4	-78	-168	96
E	67	16	83	100		-110.4	-80.4	84.4
F	23	58	89	106	62		-78	88
G	107	92	43	20	96	102		92

Calculate $D_{i j}$, D and G are the closest
Calculate the branch lengths of D and G

$$
\begin{aligned}
& d=12 \\
& g=8
\end{aligned}
$$

Neighbour joining algorithm(3)

	A	B	C	E	F	DG	r_{i}
A		63	94	67	23	94	85.25
B	63		79	16	58	84	75
C	94	79		83	89	35	95
E	67	16	83		62	88	79
F	23	58	89	62		94	81.5
DG	94	84	35	88	94		91.25

Join D and G , calculate the distances r_{i} from DG to other nodes

Neighbour joining algorithm(4)

	A	B	C	E	F	DG	r_{i}
A		-97.25	-86.25	-97.25	-143.75	-82.5	85.25
B	63		-91	-138	-98.5	-82.25	75
C	94	79		-91	-87.5	-151.25	95
E	67	16	83		-98.5	-82.25	79
F	23	58	89	62		-78.75	81.5
DG	94	84	35	88	94		91.25

Calculate $D_{i j}, \mathrm{C}$ and DG are the closest
Calculate the branch lengths of C and DG

$$
\begin{aligned}
& c=19.375 \\
& d g=15.625
\end{aligned}
$$

Neighbour joining algorithm(5)

	A	B	E	F	CDG	$\mathrm{r}_{\mathbf{i}}$
A		63	67	23	61	71.3
B	63		16	58	64	67
E	67	16		62	60	68.3
F	23	58	62		74	72.3
CDG	61	64	60	74		98.3

Join DG and C, calculate the distances r_{i} from CDG to other nodes

Neighbour joining algorithm(6)

	A	B	E	F	CDG	r_{i}
A		-75.3	-72.6	-120.6	-108.6	71.3
B	63		-119.3	-81.3	-101.3	67
E	67	16		-78.6	-90	68.3
F	23	58	62		-96.3	72.3
CDG	61	64	60	74		98.3

Calculate $D_{i j}$, A and F are the closest
Calculate the branch lengths of A and F

$$
\begin{gathered}
a=11 \\
f=12
\end{gathered}
$$

Neighbour joining algorithm(7)

	AF	B	E	CDG	r_{i}
AF		98	106	112	158
B	98		16	64	89
E	106	16		60	91
CDG	112	64	60		118

Join A and F, calculate the distances r_{i} from AF to other nodes

Neighbour joining algorithm(8)

	AF	B	E	CDG	r_{i}
AF		-149	-143	-164	158
B	98		-164	-143	89
E	106	16		-149	91
CDG	112	64	60		118

Calculate $D_{i j}$, B and E are the closest
Calculate the branch lengths of B and E
$b=7$
$e=9$

Neighbour joining algorithm(9)

	AF	BE	CDG	r_{i}
AF		188	112	300
BE	188		108	296
CDG	112	108		220

Join B and E, calculate the distances from BE to other nodes and r_{i}

Neighbour joining algorithm(10)

	AF	BE	CDG	r_{i}
AF		-408	-408	300
BE	188		-408	296
CDG	112	108		220

Calculate $D_{i j}$, BE and CDG are the closest
Calculate the branch lengths of BE and CDG $b e=92$
$c d g=16$
Join BE and CDG, calculate the distances from BECDG to the last node AF :146

Neighbour joining algorithm(11)

A Quick Summary

- NJ is fast and reliable for topology
- But not edges length
- NJ do not necessarily assume molecular clock.
- But it guarantees the assumption hold if required.
- Distances should hold Triangle Law.

Outline

What's Phylogenetic Trees?

- Build Phylogenetic Trees by Distance Methods
- Validate Phylogenetic Trees by Re-sampling
- Rock with PHYLIP

Validate the Inference

- Phylogenetic trees are inferred based on Model
- Hypothetical Inference
- How reliable are the result?
- Reliability vs. Stability
- Validate the result by Re-sampling.

Bootstrap(1)

- Given a dataset consisting of an alignment of sequences, an artificial dataset of the same size is generated
- by picking columns from the alignment at random with replacement.
- One given column in the original dataset can therefore appear several times in the artificial dataset

Bootstrap(2)

- The tree building algorithm is then applied to this new dataset, and the whole selection and tree building procedure is repeated typically 100 times.
- The frequency with which a chosen phylogenetic feature appears is taken to be a measure of the confidence we can have in this feature.
- At last, a consensus tree is created

Validate the Tree

- To improve prediction of trees and assist with localization of the root, an outgroup could be set.
- An outgroup of the following criteria:
- From species that are known to have separated from the others at an early evolutionary time
- More distantly related with other sequences

More words on Outgroup

- More than one can be selected
- By independently information, such as fossil evidence
- Too distant an outgroup may lead to incorrect prediction

Outline

What's Phylogenetic Trees?

- Build Phylogenetic Trees by Distance Methods
- Validate Phylogenetic Trees by Re-sampling
- Rock with PHYLIP

Phylogenetic Software

- Multialignment
- ClustalW
- POA
- Phylogenetic analysis
- PHYLIP (Felsenstein, 1989,1996)
- PAUP (Sinauar Associates)
- PAML (Yang Ziheng)
- MEGA (Nei)
- MacClade (Macintosh computer)

Programs in PHYLIP

- Create a distance table by:
- DNADIST: various models of evolution
- PROTDIST: based on the PAM model or others
- as input to the following:
- NEIGHBOR:
- NJ, no clock, no root
- UPGMA and a clock and root

NJ @ PHYLIP

- Multiple alignment: clustalw, save the output in phylip format (*.phy)
- Bootstrap the sequence data: SEQBOOT
- Build Phylogenetic trees: NEIGHBOR
- Calc Consensus : CONSENSUS

Multiple alignment in Phylip format

SEQBOOT

1. The name of *.PHY
2. Input a Random number seed (must be odd)

SEQBOOT

$$
\begin{aligned}
& \mathrm{J}==\text { Bootstrap } \\
& \mathrm{R}==\text { number of republicate, typical } 100
\end{aligned}
$$

The result file with 100 replicate

DNADIST

T: 15~30
M: 100

Distance Matrix

100 replica $\rightarrow 100$ distance

matrix

NEIGHBOR

```
+[2J+[H
Neighbor-Joining/UPGMA method version 3.5
Settings for this run:
                            Heighbor-joining or UPGMA tree? Heighbor-joining
                                    Outgroup root? Ho, use as outgroup species 1
            Lower-triangular data matrix?
            Upper-triangular data matrix?
                Subreplicates?
        Randomize input order of species?
            Analyze multiple data sets?
        Terminal type (IBH PC, UT52, AHSI)?
        Print out the data at start of run
Print indications of progress of run
            Print out tree
        Write out trees onto tree file? Yes
                        No
                                H0
                                No
                                Ho. Use input order
                                Ho
                        ANS I
            H0
            Yes
            Yes
Are these settings correct? (type Y or the letter for one to change)
```

$>\mathrm{M}==100$

CONSENSE

View the Treefile by TREEVIEW

More Help on PHYLIP

- Homepage:
- http://evolution.genetics.washington.edu/phylip .html
- A pretty good tutorial:
- http://koti.mbnet.fi/tuimala/oppaat/phylip2.pdf

Centre of Bioinformatics（PKU）EMBnet China Node

Thank you for your attentions！
 学
 生
 物
 信
 息
 中
 $心$

