Play with Phylogenetic Trees

Ge Gao and Xiying Wang Center of Bioinformatics, PKU 2005-12-31

Validate Phylogenetic Trees by Re-sampling

Rock with PHYLIP

Phylogenetic Trees

- Phylogenetics is the study of evolutionary relationships among organisms
- A phylogenetic tree or phylogeny for a set of taxa (species, genes, ...) is an evolutionary tree representing their relationships.
 - A tree is an acyclic graph: horizontal transfer is ignored
 - Edge weights may represent distance in evolution

Phylogenetic Trees

- Trees can be rooted or unrooted.
 - In the case of unrooted trees we can assume to have not enough data to determine the root of the tree
 - The leaves of a phylogenetic tree usually represent the present day taxa, the internal nodes represent hypothesized ancestors.

Evolution of organisms (tree of species)

Evolution of genes (tree of gene)

Application:

- Comparative Genomics
- Gene function prediction

Models and Methods

- Model: an abstract of *"real"* evolutionary events.
- Maximum Parsimony methods
 Distance Matrix methods
 Maximum Likelihood methods
- Which is better?

Maximum Parsimony

Variation is small

All possible trees are evaluated
 <=11 or 12 sequences concerned
 Time-consuming

Concensus tree for more than one MP trees

Distance Matrix methods

- Variation is intermediate
- Hierarchical inference
 - Rather faster then MP.
 - Large number of sequences

The distance matrix can be derived from multiple alignment or evolution event or others like K-tuple method

<=11 or 12 sequences concerned</p>

- Both topology and edge lengths are considered.
 - based on probability inference.

$$P(x^{\bullet} | T,t_{\bullet})$$

A Quick Summary

	MP	DM	ML
Variation	+	++	+++
Computation Complex	++	+	+++
Edge Length Estimation	Ν	N	Y
Flexibility	+	+++	++

A General Protocol

Outline

- What's Phylogenetic Trees?
- Build Phylogenetic Trees by Distance Methods
- Validate Phylogenetic Trees by Re-sampling
- Rock by PHYLIP

- Neighbors the closest taxa
- Rather fast
- More reliable than MP when branch lengths vary (Jin and Nei, 1990; Swofford et al. 1996)
- Additive: the lengths be additive

Neighbors Joining

Proposed by Saitou and Nei in 1987

Pearson et al. enhance NJ in 1999 (Not a single tree predicted)

Pairing sequences based on the effect of the pairing on the sum of the sum of the branch lengths of the tree

Starting from a star-like tree

Similarity to Distance

Convert alignment scores to distances:

$$D = -\log S_{eff} = -\log \{ (S_{obs} - S_{rand}) / (S_{max} - S_{rand}) \}$$

 S_{obs} is observed pairwise alignment score

S_{max} is the maximum score, the average of the score of aligning either sequence to itself.

Srand is the expected score for aligning two random sequences of the same length and residue composition, which can be calculated by random shuffling of the two sequences or by an approximate calculation given in Feng & Doolittle[1996]

Neighbour Joining Algorithm

For each node i the distance from the rest of the tree is estimated by

$$r_i = \frac{1}{N-2} \sum_{k \neq i} d_{i,k}$$

Choose the nodes *i* and *j* that for which $D_{ij} = d_{ij} - r_i - r_j$ is smallest

join i and j (ij is new node)

Compute branch length from i and j to ij

$$d_{i,(ij)} = \frac{1}{2}d_{i,j} + \frac{1}{2}(r_i - r_j), d_{j,(ij)} = \frac{1}{2}d_{i,j} + \frac{1}{2}(r_j - r_i)$$

Compute the distances between the new cluster and each other cluster:

$$d_{(ij),k} = \frac{d_{i,k} + d_{j,k} - d_{i,j}}{2}$$

Neighbour joining algorithm(1)

	A	В	С	D	E	F	G	r _i
A		63	94	111	67	23	107	88.4
В	63		79	96	16	58	92	80.8
С	94	79		47	83	89	43	87
D	111	96	47		100	106	20	96
E	67	16	83	100		62	96	84.4
F	23	58	89	106	62		102	88
G	107	92	43	20	96	102		92

Start from the star-like tree Calculate r_i

Neighbour joining algorithm(2)

	A	В	c	D	E	F	G	r,
Α		-106.2	-81.4	-73.4	-105.8	-153.4	-69.4	88.4
В	63		-88.8	-80.8	-149.2	-110.8	-80.8	80.8
С	94	79		-136	-84.4	-86	-136	87
D	111	96	47		-80.4	-78	-168	96
E	67	16	83	100		-110.4	-80.4	84.4
F	23	58	89	106	62		-78	88
G	107	92	43	20	96	102		92

Calculate D_{ij} , D and G are the closest

Calculate the branch lengths of D and G d = 12

g = 8

Neighbour joining algorithm(3)

	A	В	С	E	F	DG	r _i
Α		63	94	67	23	94	85.25
В	63		79	16	58	84	75
С	94	79		83	89	35	95
E	67	16	83		62	88	79
F	23	58	89	62		94	81.5
DG	94	84	35	88	94		91.25

Join D and G, calculate the distances $\mathcal{F}_i \stackrel{G}{\leq}$ from DG to other nodes

Neighbour joining algorithm(4)

	A	В	C	E	F	DG	r,
Α		-97.25	-86.25	-97.25	-143.75	-82.5	85.25
В	63		-91	-138	-98.5	-82.25	75
С	94	79		-91	-87.5	-151.25	95
E	67	16	83		-98.5	-82.25	79
F	23	58	89	62		-78.75	81.5
DG	94	84	35	88	94		91.25

Calculate D_{ij} , C and DG are the closest Calculate the branch lengths of C and DG c = 19.375dg = 15.625

Neighbour joining algorithm(5)

	Α	В	E	F	CDG	r _i
Α		63	67	23	61	71.3
В	63		16	58	64	67
Е	67	16		62	60	68.3
F	23	58	62		74	72.3
CDG	61	64	60	74		98.3

Join DG and C, calculate the distances γ_i from CDG to other nodes

Neighbour joining algorithm(6)

	A	В	E	F	CDG	r,
Α		-75.3	-72.6	-120.6	-108.6	71.3
В	63		-119.3	-81.3	-101.3	67
Е	67	16		-78.6	-90	68.3
F	23	58	62		-96.3	72.3
CDG	61	64	60	74		98.3

Calculate D_{ij} , A and F are the closest

Calculate the branch lengths of A and F

$$a = 11$$

 $f = 12$

Neighbour joining algorithm(7)

	AF	В	Е	CDG	r _i
AF		98	106	112	158
В	98		16	64	89
E	106	16		60	91
CDG	112	64	60		118

Join A and F, calculate the distances γ_i from AF to other nodes

Neighbour joining algorithm(8)

	AF	В	E	CDG	r _i
AF		-149	-143	-164	158
В	98		-164	-143	89
E	106	16		-149	91
CDG	112	64	60		118

Calculate D_{ij} , B and E are the closest Calculate the branch lengths of B and E b = 7e = 9

Neighbour joining algorithm(9)

	AF	BE	CDG	r _i
AF		188	112	300
BE	188		108	296
CDG	112	108		220

Join B and E, calculate the distances from BE to other nodes and γ_i

Neighbour joining algorithm(10)

	AF	BE	CDG	r,
AF		-408	-408	300
BE	188		-408	296
CDG	112	108		220

Calculate D_{ij} , BE and CDG are the closest

Calculate the branch lengths of BE and CDG $_{G}$

$$be = 92$$

$$cdg = 16$$

Join BE and CDG, calculate the distances from BECDG to the last node AF :146

Neighbour joining algorithm(11)

A Quick Summary

NJ is fast and reliable for topology
 But not edges length

NJ do not necessarily assume molecular clock.

But it guarantees the assumption hold if required.

Distances should hold Triangle Law.

1	•	
14	110	\mathbf{O}
	ıtl	ıtlin

What's Phylogenetic Trees?

Build Phylogenetic Trees by Distance Methods

Validate Phylogenetic Trees by Re-sampling

Rock with PHYLIP

Bootstrap(1)

- Given a dataset consisting of an alignment of sequences, an artificial dataset of the same size is generated
 - by picking columns from the alignment at random with replacement.

One given column in the original dataset can therefore appear several times in the artificial dataset

Bootstrap(2)

- The tree building algorithm is then applied to this new dataset, and the whole selection and tree building procedure is repeated typically 100 times.
- The frequency with which a chosen phylogenetic feature appears is taken to be a measure of the confidence we can have in this feature.
- At last, a consensus tree is created

Validate the Tree

To improve prediction of trees and assist with localization of the root, an outgroup could be set.

An outgroup of the following criteria:

- From species that are known to have separated from the others at an early evolutionary time
- More distantly related with other sequences

- More than one can be selected
 - By independently information, such as fossil evidence
- Too distant an outgroup may lead to incorrect prediction

Outline

What's Phylogenetic Trees?

Build Phylogenetic Trees by Distance Methods

Validate Phylogenetic Trees by Re-sampling

Rock with PHYLIP

Phylogenetic Software

- Multialignment
 - ClustalW
 - POA
- Phylogenetic analysis
 - PHYLIP (Felsenstein, 1989, 1996)
 - PAUP (Sinauar Associates)
 - PAML (Yang Ziheng)
 - MEGA (Nei)
 - MacClade (Macintosh computer)

Programs in PHYLIP

- Create a distance table by:
 - DNADIST: various models of evolution
 - PROTDIST: based on the PAM model or others
- as input to the following:
 - NEIGHBOR:
 - NJ, no clock, no root
 - UPGMA and a clock and root

NJ @ PHYLIP

- Multiple alignment: clustalw,
 - save the output in phylip format (*.phy)
- Bootstrap the sequence data: SEQBOOT
- Build Phylogenetic trees: NEIGHBOR
- Calc Consensus : CONSENSUS

- Mo8 ATGTATTTCGTACATTACTGCCAGCCACCATGAATATTGTACAGTACCAT
- Mo9 ATGTATCTCGTACATTACTGCCAGCCACCATGAATATTGTACGGTACCAT
- Mo12 ATGTATTTCGTACATTACTG CCAGCCACCATGAATATTGTACGGTACCAT
- Mo13 ATGTATCTCGTACATTACTGCCAGCCACCATGAATATTGTACGGTACCAT

Mutiple Sequence Alignment (*.PHY)

Multiple alignment in Phylip format

🖺 Egp_n - WordPad 🐘 👘 👘 👘 👘 👘												
<u>F</u> ile <u>E</u> dit	<u>File E</u> dit <u>V</u> iew Insert F <u>o</u> rmat <u>H</u> elp											
ലംബം		AA V		a .1								
		00		뾔								
2	Q 1565—								<u> </u>			
DENV-:	3 ATGA	ICAATGA	GATO	AGTAGGAAAC	AGAGATTTTG	TGGAAGGCCT						
DENV-	1 ATO	CCATGC	GGTGCGTGGG	AATA	LAGACTTCG	TGGAAGGACT						
DENV-:	2		GCTGCATAGG	AATATCAAAT	AGGom	L COAGT						
DENV-	4	ATGC	G. CGTAGG	AGTAGGAAAC	AGAGACTTTG	TGGam	Se	allence				
KUNV		TTTA	ACTGTC	AATGAGCAAC	AGAGATTTCC	TGGAGGGAGT		quence				
		TTCA	ACTGTTTAGG	GAGTAAC	AGAGACTTCC	TGGAGGGAGT	1	1				
JEV		TTTA	ATTGTCTGGG	AATGO		TAGAAGGAGC		ength				
VEV			ACTGICIGGG	AATGAGCAG	NGATTICA SCA	TTGAAGGIGC						
LGTY			GITGCICCCI	CCTGGNNNC	AGO	NCTGGGGT						
ALKV		ACTC	GGTGCICICI	CCTGCIGIIC	CGGGACTI	CI0000I						
TREV		TCGC	GTTGCACACA	CTTGGAAAAC	AGGGACTTTG	TGACTO						
LIV		TCR	GCTGCACACA	CTTGGAAAAC	AGGGACTTTG	TCACTGGCAC						
DTV		ACGA	GAL SACACA	CCTTGAGAAC	AGGGACTTTG	TGACAGGAGT						
POWV		ACGA	GGTGCACO	TCTTGAGAAC	AGAGATTTTG	TGACAGGAAC		5† () I U S				
MMLV		ACCA	ATTGTGTTTC	TR. SAGAAG	AGGGACATCC	TAAGAGGATC						
RBV		ACTC	AGTGTGTCAA	CATCCAR	CGTGATATCA	TAAGGGGAGC						
APOIV		AGCA	CCTGTGTTAG	TGTGGCCAAA	A TATGA	TCCGTGGTGA						
MODV		ACCA	ATTGTGTGAC	CATATCACAG	AGAGAA	TTAAAGGAGT						
KRV		Т	CTTCCATTGA	GCCGTTGTAT	ACCATCTCGG	TGGAAC						
	ATCO	GGGAGCT	ACGTGGGTTG	ACGTGGTGCT	CGAGCACGGT	GGGTGTGTGA						
	GTCA	IGGAGCT	ACGTGGGTGG	ATGTGGTACT	GGAGCATGGA	AGTTGCGTCA						
	GTCA	IGGAGGG	AGTTGGGTTG	ACATAGTTTT	AGAACATGGA	AGTTGTGTGA		UIUS				
	CTCA	IGGTGGA	GCATGGGTCG	ACCTGGTGCT	AGAACATGGA	GGATGCGTCA						
	GICC	CGAGCA	ACAIGGGIGG	ACTIGGICCT	GGAAGGIGAC	AGCIGIGIGA			-			
	GICI	CGAGCI	ACATGGGTIG	ACCTGGTACT	ACANCELEAT	AGTIGIGIGA						
	TTC	GGAGCT	ACATGGGTCG	ATTTGGTGCT	GGIGGGCGIC	AGTTGCATCA			-1			
r For Help, pr	ess F1				CONCOUNT	norroowiow						
ronnop, pr	00011											

SEQBOOT

1. The name of *.PHY

2. Input a Random number seed (must be odd)

SEQBOOT

J == Bootstrap R == number of republicate, typical 100

🗾 out f	ile - 记	爭本					_ D ×
文件()	编辑(E)	搜索 (S)	帮助(H)				
8	50						
Mo 3		AATGTATT	TG TATTAACCC	C CAAACCCCAA	TAATTTGGGC	CAACTCTTT	· _
Mo5		AATGTATT	TG TATTAACCC	C CAAACCCCAA	TAATTTGGGT	TAACTCTTT	
Moó		AATGTATT	TG TATTAACCC	C CAAACCCCAA	TAATTTGGGT	TAACTCTTT	
Mo7		AATGTATT	TG TATTAACCC	C CAAACCCCAA	TAATTTGGGT	TAACTCTTTI	
Mo 8		AATGTATT	TG TATTAACCC	C CAAACCCCAA	TAATTTGGGT	TAACTCTTTI	
Mo9		AATGTATT	TG TATTAACCC	C CAAACCCCAA	TAATTTGGGT	TAACTCTTT	•
Mo12		AATGTATT	TG TATTAACCC	C CAAACCCCAA	TAATTTGGGT	TAACTCTTT	
Mo13		AATGTATT	TG TATTAACCC	C CAAACCCCAA	TAATTTGGGT	TAACTCTTT	
8	50						
Mo3		TTGTTTAA	AA CATTAAACT	T TGACGGGATA	TGGGCAACCC	GGGACCAAAT	•
Mo5		TTGTTTAA	AA CATTAAACT	T TGACGGGATA	TGGGTAACCC	GGGACCAAAT	
Moó		TTGTTTAA	AA CATTAAACT	T TGACGGGATA	TGGGTAACCC	GGGACCAAAT	·
Mo7		TTGTTTAA	AA CATTAAACT	T TGACGGGATA	TGGGTAACCC	GGGACCAAAT	•
Mo8		TTGTTTAA	AA CATTAAACT	T TGACGGGATA	TGGGTAACCC	GGGACCAAAT	
Mo9		TTGCTTAA	AA CATTAAACT	T TGACGGGATA	TGGGTAACCC	GGGACCAAAT	
Mo12		TTGTTTAA	AA CATTAAACT	T TGACGGGATA	TGGGTAACCC	GGGACCAAAT	•
Mo13		TTGCTTAA	AA CATTAAACT	T TGACGGGATA	TGGGTAACCC	GGGACCAAAT	•
8	50						
Mo3		ATGGGTTT	TT CGGAAATTA	C CTCCCAAGCA	TAAATAATTT	GGGTACCCTT	•
Mo5		ATGGGTTT	TT CGGAAATTA	C CTCCCAAGCA	TAAATAATTT	GGGTACCCTT	
Moó		ATGGGTTT	TT CGGAAATTA	C CTCCCAAGCA	TAAATAATTT	GGGTACCCTT	
Mo7		ATGGGTTT	TT CGGAAATTA	C CTCCCAAGCA	TAAATAATTT	GGGTACCCTT	
Mo8		ATGGGTTT	TT CGGAAATTA	C CTCCCAAGCA	TAAATAATTT	GGGTACCCTT	

The result file with 100 replicate

DNADIST

WE DWADIST	
I Input sequences interleaved? Yes Ø Terminal type (IBM PC, VT52, ANSI)? ANSI 1 Print out the data at start of run No 2 Print indications of progress of run Yes	
Are these settings correct? (type Y or letter for one to change)	
t Transition/transversion ratio? 15 +[2J+[H Nucleic acid sequence Distance Matrix program, version 3.573c	
Settings for this run:DDDistance (Kimura, Jin/Nei, ML, J-C)?Kimura 2-parameterTTransition/transversion ratio?15.0000COne category of substitution rates?YesLForm of distance matrix?SquareMAnalyze multiple data sets?YesIInput sequences interleaved?Yes0Terminal type (IBM PC, VT52, ANSI)?ANSI1Print out the data at start of runNo2Print indications of progress of runYes	
Are these settings correct? (type Y or letter for one to change)	

T: 15 ~ 30 M: 100

Distance Matrix

📕 outfil	.e - 写字板									_ 8 ×
文件(图)	编辑(E) 查看(V) 插入(1) 格式 @) 帮助(H)						
ne		L X B		B						
						- 1 - 1 -				
米体				_ 10		BZU	[🔊			
8										<u> </u>
Mo3	0.0000	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415	0.0415		
Mo5	0.0415	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Mo6	0.0415	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Mo7	0.0415	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Mo8	0.0415	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Mo9	0.0415	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Mo12	0.0415	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Mo13	0.0415	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
8										
Mo3	0.0000	0.0204	0.0204	0.0204	0.0204	0.0415	0.0204	0.0415		
Mo5	0.0204	0.0000	0.0000	0.0000	0.0000	0.0204	0.0000	0.0204		
Моб	0.0204	0.0000	0.0000	0.0000	0.0000	0.0204	0.0000	0.0204		
Mo7	0.0204	0.0000	0.0000	0.0000	0.0000	0.0204	0.0000	0.0204		
Mo8	0.0204	0.0000	0.0000	0.0000	0.0000	0.0204	0.0000	0.0204		
Mo9	0.0415	0.0204	0.0204	0.0204	0.0204	0.0000	0.0204	0.0000		
Mo12	0.0204	0.0000	0.0000	0.0000	0.0000	0.0204	0.0000	0.0204		
Mo13	0.0415	0.0204	0.0204	0.0204	0.0204	0.0000	0.0204	0.0000		
8										
Mo3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0204	0.0000	0.0204		
Mo5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0204	0.0000	0.0204		
Mo6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0204	0.0000	0.0204		
Mo7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0204	0.0000	0.0204		
Mo8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0204	0.0000	0.0204		
Mo9	0.0204	0.0204	0.0204	0.0204	0.0204	0.0000	0.0204	0.0000		
Mo12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0204	0.0000	0.0204		-
要"帮助"	,请按 F1									NUM

100 replica → 100 distance

matrix

NEIGHBOR

≻M == 100

CONSENSE

CORSERSE									
D:\WANCHENG\SOFTWARE\PHYLIP\PHYLIPWIN\CONSENSE.EXE: can't read infile Please enter a new filename>D:\wancheng\software\Phylip\phylipwin\wan1									
+[2J+[H Majority-rule and strict consensus tree program, version 3.573c									
Settings for this run: O Utgroup root? No, use as outgroup species R Trees to be treated as Rooted? No O Terminal type (IBM PC, VT52, ANSI)? ANSI 1 Print out the sets of species Yes 2 Print indications of progress of run Yes 3 Print out tree Yes 4 Write out trees onto tree file? Yes	1								
Are these settings correct? (type Y or the letter for one to change)									

View the Treefile by TREEVIEW

More Help on PHYLIP

Homepage:

<u>http://evolution.genetics.washington.edu/phylip</u> <u>.html</u>

A pretty good tutorial:

http://koti.mbnet.fi/tuimala/oppaat/phylip2.pdf

Centre of Bioinformatics (*PKU*) EMBnet China Node

Thank you for your attentions!

北 寡 大 学 生 物 信 ٩ 15