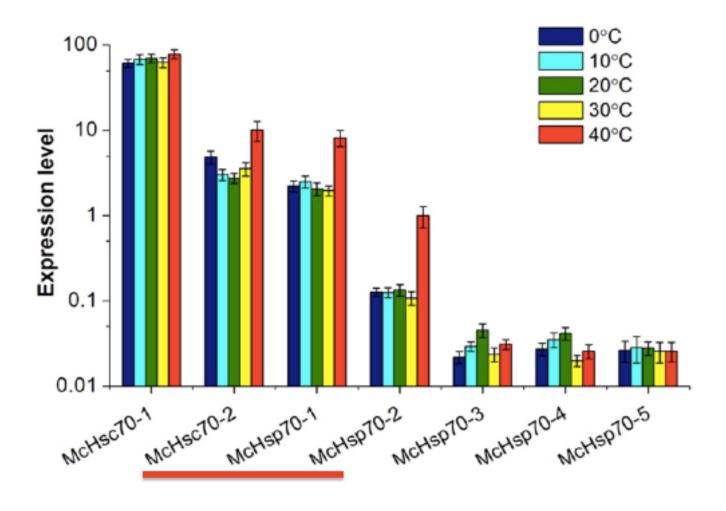
走进庆网蛱蝶(Melitaea cinxia)

——Tpi基因与自然选择

胡平 张姗 于洋 王萍 2015-6-27

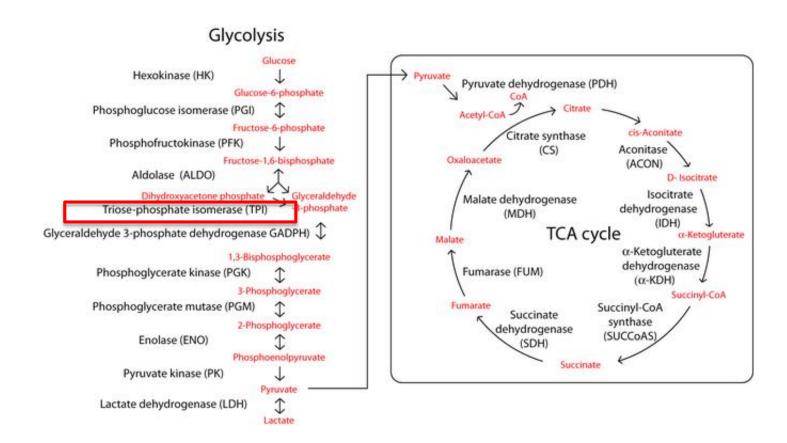
Melitaea cinxia (庆网蛱蝶)

Melitaea cinxia is a sun-loving butterfly, being active only in bright sunshine. Like most fritillaries, it is difficult to follow as it flies with a series of rapid wing beats followed by a short glide. Both sexes are avid nectar feeders, Thrift and Bird's-foot Trefoil being particular favourites. The adults roost, often communally, on flower heads of various grasses.



出没时间

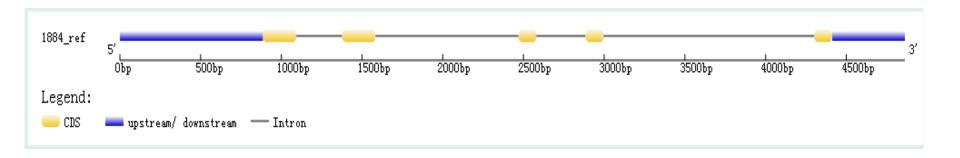
		Ja	ın			Fe	b			Ha	r			Αр	г			Ha	y			Ju	n			Ju	1			Au	g			Se	Р			0c	t			No	v			De	С	
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
0vun																				•	•	•	•	•	•	•																						
Larva	•	•		•	•	•	•	•		•	•		•	•	•	•									•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Pupa															•				•																													
Inago																	•	•	•	•	•	•	•	•																								


Adults emerge in the second half of May, reaching a peak at the end of the month and at the start of June.

There is typically one generation each year but in good years, when there has been a particularly-early emergence that starts as early as the end of April, there may be a partial second brood that emerges in August.

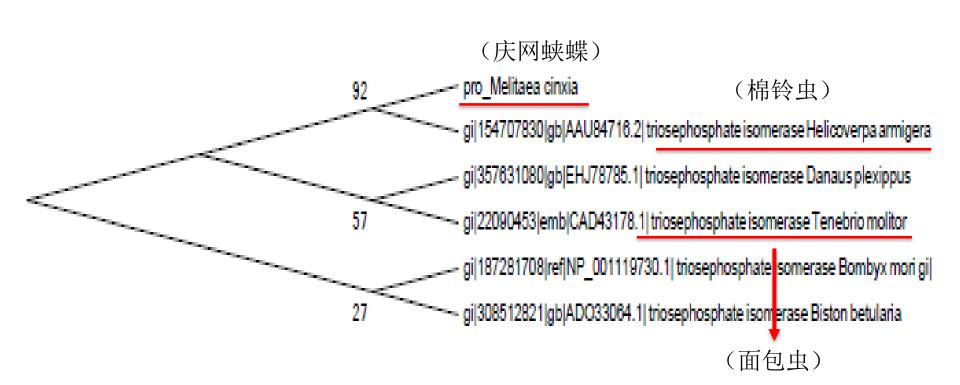
Expression level of hsp70 genes after exposure to five temperatures for 2 h.

Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection



SNP calling

MCINX00436	Triose-phosphate	918	854-
6-PA	isomerase	967	716
CHROM	POS	REF	ALT
scaffold1884	92418	G	Α
scaffold1884	92735	Т	G
scaffold1884	92755	Т	Α
scaffold1884	93396	G	Α


GSDS2.0 Gene Structure Display Server

Intron	
Color	Shape Line Line width 1 px Intron rescale No rescale Display intron phase □
CDS	
Color	Shape Round-corner rect ▼ Filled ✓ Height 10 px
UTR	
Color	Shape Rectangle ▼ Filled ▼ Height 8 px

Secondary Structure Prediction and Comparison

Phylogeny Tree

Amino acid comparison

Range 1:	1 to 24	8 Graphics		▼ Ne	ext Match 🛕 Previ	ous Mato	:h
Score		Expect M	lethod	Identities	Positives	Gaps	
461 bit	s(1187	') 3e-170 C	Compositional matrix adjust.	224/248(90%)	236/248(95%)	0/248((0%)
Query	1		NYKMNGDKKQVTEIVETLKKG NYKMNGDK Q+ EIV LKKG		-		60
Sbjct	1		NYKMNGDKNQINEIVNNLKKG				60
Query	61		KGAFTGEISPAMIKDIGANWV KGAFTGEISPAMIKD+GANWV				120
Sbjct	61	-	PKGAFTGEISPAMIKDVGANWV				120
Query	121		LEEREAGKTEEVVFRQTKALL LEEREAGKTEEVVFRQTKALL				180
Sbjct	121		LEEREAGKTEEVVFRÕTKALL				180
Query	181	-	NWLSANASPDVAASVRIQYGG NWLS+NASPDVA +VRIQYGG				240
Sbjct	181		NWLSSNASPDVAQNVRIQYGG				240
Query	241	VDIVNATQ V+IVNAT+	248				
Sbjct	241	VEIVNATK	248				

Amino acids differencese₁										
K18N	T26N	S60G	A203Q₽							
T21N	V36A	A70D	G 215 A ₽							
E25N	G56D	S60Ge								

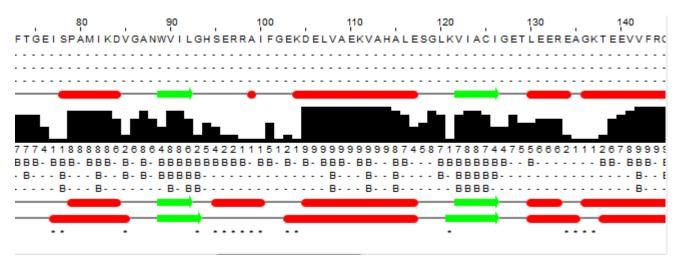
Secondary Structure

Secondary structure prediction

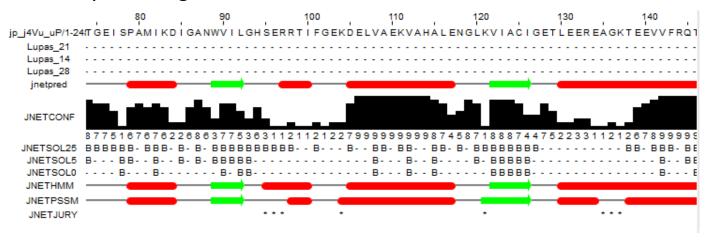
A Protein Secondary Structure Prediction Server

Home REST API About News F.A.Q.

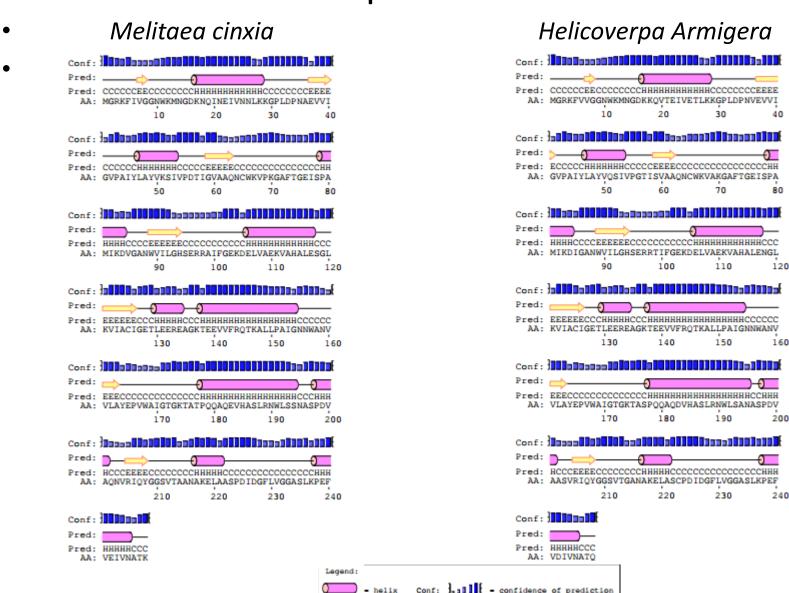
orials Monitoring Contact Publication



UCL Department Of Computer Science
Bioinformatics Group



Prediction from Jpred

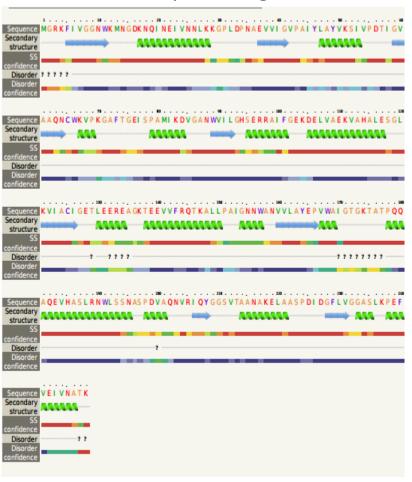

Melitaea cinxia

• Helicoverpa Armigera

Prediction from Psipred

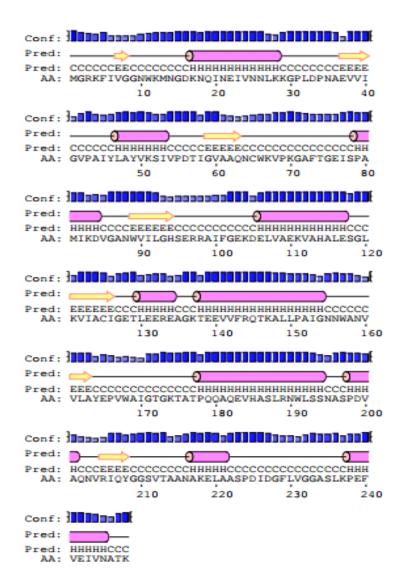
coil

Pred: predicted secondary structure

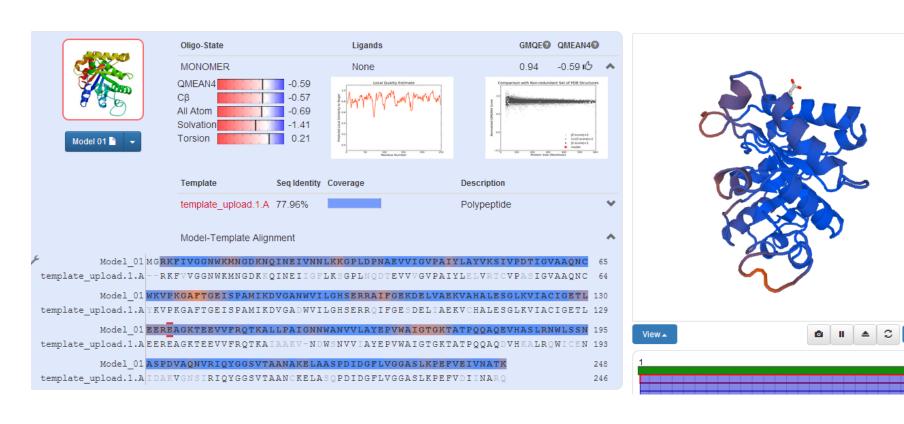

AA: target seguence

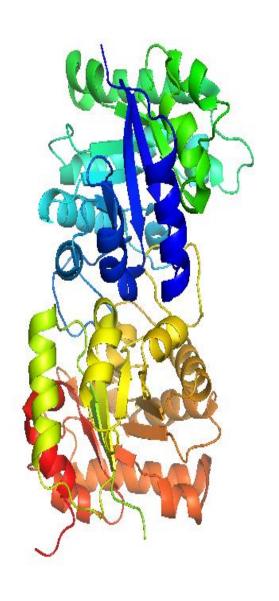
Prediction from Phyre2

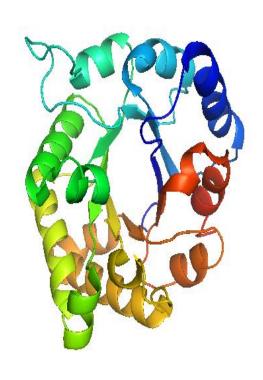
Melitaea cinxia



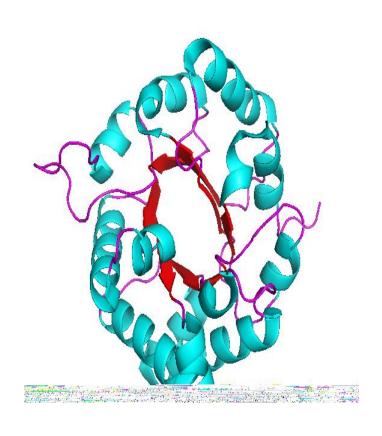
Helicoverpa Armigera

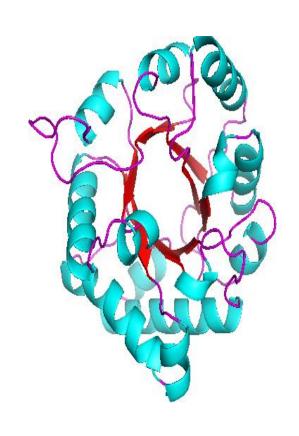

Prediction differences of Psipred and Phyre2





SWISS-MODEL




Structure of Tpi of Tenebrio molitor

Tpi subunit comparison

Tenebrio molitor

Melitaea cinxia

Active site comparison

感想

- 收获颇丰,得到了很多生物信息的相关知识
- 学会如何对一个未知蛋白(序列)进行分析。
- · 感谢罗老师一学期的付出! 感谢G06成员!

Thank you!