

The Analysis of Structure and Function on Mouse Protein Kinase D

Feili Yang, Mengying Yu Qian Wu, Yuan Fang Group 9 19th Jun, 2014

- General gene and protein analysis on PKD1
- Structure prediction and analysis on PKD1
- Signaling pathways analysis on PKD

- General gene and protein analysis on PKD1
- Structure prediction and analysis on PKD1
- □ Signaling pathways analysis on PKD

Protein Kinase D (PKD) Introduction

- PKD is a new family of second messenger stimulated kinases
- IP3R and PKD are downstream molecules of PLC pathway

Modified from Molecular Interventions (2003) 3:273-280

Protein kinase D is a subfamily of Serine/threonine kinases

- PKDs have DAG binding domains
- PKDs are classified into CaMKs based on their catalytic structure and substrate specificity.
 - Activities of PKDs are regulated by upstream kinases such as PKC, Src and Abl.

Avkiran, M et. al. (2008) Circ Res

Major PKD signaling pathways and cellular responses

Wang,Q(2006)Trends Pharmacol Sci

- General gene and protein analysis on PKD1
- Structure prediction and analysis on PKD1
- □ Signaling pathways analysis on PKD

PKD1 Gene Sequence

[49840560]	Chromosome 12 - NC_000078.6
Gm7481 🔶 LOC102637	/802 Prkd1 LOC102637884 1700008C04Rik
NCBI Reference Sequence	NM_008858.3
Gene name	Prkd1
Gene ID	18760
Location	Chromosome 12, 12C1
CDS	2513007
Homology	Conserved in human, chimpanzee, Rhesus monkey, dog, cow, rat, chicken, zebrafish, and frog

UniProt accession	KPCD1_MOUSE Q62101
Sequence length	918AA
Enzyme regulation	Activated by DAG and phorbol esters
Subcellular location	Cytoplasm, Cell membrane, Golgi apparatus
Biological process	Angiogenesis, Apoptosis, Differentiation, Immunity, Inflammatory response
PTM	Phosphoprotein

PKD1 Expression

PKD Family Phylogeny Tree

0.2

Table. Different species PKD1 protein sequences alignment

Species	Accession	Identity	Similarity
Human/Mouse	Q15139/Q62101	851/920(92.5%)	874/920(95.0%)
Human/Rat	Q15139/Q9WTQ1	855/920(92.9%)	876/920(95.2%)
Mouse/Rat	Q62101/Q9WTQ1	902/918(98.3%)	906/918(98.7%)

Comparison of PKD family activation loop sequences

The activation loop segment is 100% conserved among all members of the novel PKD protein kinase subfamily.

ADPFPQVKLCDFGFARIIGEKSFRFSVVGTPAYLAPE

KPCD2_MOUSE

Conserved Motif Prediction

Homology: catalytic domain > Cys1 > Cys2 > PH domain

Conserved Motif Prediction

PKDs are highly conserved enzymes, which revealed the important functions of PKD in cells and their involvement in disease.

- General gene and protein analysis on PKD1
- Structure prediction and analysis on PKD1
- □ Signaling pathways analysis on PKD

Image coloured by rainbow N → C terminus Model dimensions (Å): X:82.802 Y:106.454 Z:61.307 Model (left) based on template c3pfqA

Top template information

PDB header:transferase

Chain: A: PDB Molecule:protein kinase c beta type; PDBTitle: crystal structure and allosteric activation of protein kinase c beta2 ii

Confidence and coverage

Confidence: 100.0%

Coverage: 53%

485 residues (53% of your sequence) have been modelled with 100.0% confidence by the single highest scoring template.

You may wish to submit your sequence to <u>Phyrealarm</u>. This will automatically scan your sequence every week for new potential templates as they appear in the Phyre2 library.

3D viewing

Interactive 3D view in JSmol

For other options to view your downloaded structure offline see the $\underline{\mathsf{FAQ}}$

Template: Protein kinase C beta

The PKC and PKD families

AC, acidic domain;

AP, apolar region;

C1, DAG-binding domain that contains C1a and C1b domains;

C2, Ca²⁺-binding domain;

- C3, ATP-binding domain in PKC;
- C4, substrate-binding domain in PKC;

Kinase, catalytic domain;

- P, proline-rich region;
- PS, pseudosubstrate domain.

PKC beta

PKD

Phosphorylation sites: Ser-744 Ser-748

Alignment confidence

Conservation

Active site

Substrate-binding site

ATP-binding site

- General gene and protein analysis on PKD1
- Structure prediction and analysis on PKD1
- Signaling pathways analysis on PKD

PKD Signaling

	Col4a3bp	collagen, type IV, alpha 3 (Goodpasture antigen) binding protein Gene; May mediate the intracel [] (624 aa)
	Kidins220	kinase D-interacting substrate 220 Gene (1793 aa)
	Pkd2	polycystic kidney disease 2 Gene; Functions as a calcium permeable cation channel. PKD1 and PKD [] (966 aa)
	Tnni3	troponin I, cardiac 3 Gene; Troponin I is the inhibitory subunit of troponin, the thin filament [] (211 aa)
	Cdh1	cadherin 1 Gene; Cadherins are calcium-dependent cell adhesion proteins. They preferentially in [] (884 aa)
	Rin1	Ras and Rab interactor 1 Gene; Ras effector protein, which may serve as an inhibitory modulator [] (763 aa)
	Creb1	cAMP responsive element binding protein 1 Gene; This protein binds the cAMP response element (C [] (341 aa)
	Agt	angiotensinogen (serpin peptidase inhibitor, clade A, member 8) Gene; Essential component of th [] (482 aa)
	Cyp11b2	cytochrome P450, family 11, subfamily b, polypeptide 2 Gene; Forms corticosterone from 11-deoxy [] (500 aa)
•	Hdac5	histone deacetylase 5 Gene; Responsible for the deacetylation of lysine residues on the N-termi [] (1121 aa)
•	Hdac5	histone deacetylase 5 Gene; Responsible for the deacetylation of lysine residues on the N-termi [] (1121 aa)

Neighborhood Gene Fusion	Cooccurrence	Experiments	 Databases Textmining 	[Homology]
		•	•	0.989
		•	•	0.954
			•	0.915
			•	0.884
		•	•	0.879
			•	0.856
			•	0.845
			•	0.843
			•	0.836
		•	•	0.831

PKD Signaling

Substrate Protein	PKD Target Motif(s)	Functional Consequence	Ref
Kidins220	914 <u>ITR</u> QMSFDLTK924 (Ser919)	Polarized plasma membrane localization in neural cells	41
RIN1	346LLRSMSAAFCS356 (Ser351)	Binding to 14-3-3 protein and altered subcellular localization	80
Pl₄KIII-β	289 <u>LKR</u> TA S NPKVE ²⁹⁹ (Ser294)	Increased lipid kinase activity and enhanced vesicular transport to plasma membrane	27
Hsp27	⁷⁷ LSRQLSGVSE ⁸⁷ (Ser82)	Unknown	34
cTnl	¹⁷ PIRRR S SNYRA ²⁷ (Ser22)	Decreased myofibrillar calcium sensitivity	57
	¹⁸ IRRRSSNYRAY ²⁸ (Ser23)		
HDAC5	²⁵⁴ LRKTASEPNLK ²⁶⁴ (Ser259)	Binding to 14-3-3 protein and nuclear export	36,64
	⁴⁹³ LSRTQ S SPLPQ ⁵⁰³ (Ser498)		
HDAC7	¹⁵⁰ LRKTVSEPNLK ¹⁶⁰ (Ser155)	Binding to 14-3-3 protein and nuclear export	81
	¹⁷⁶ LLRKE S APPSL ¹⁸⁶ (Ser181)		
	316LSRTRSEPLPP326 (Ser321)		
	444LSRAQSSPAAP454 (Ser449)		
CREB	¹²⁸ LSRRPSYRKIL ¹³⁸ (Ser133)	Transcriptional activation of CREB-responsive genes via recruitment of co-activators CBP/p300	30
CERT	127LRRHGSMVSLV137 (Ser132)	Decreased affinity for Pl ₄ P and Golgi membrane dissociation	82
VR1	111LYDRRSIFEAV121 (Ser116)	Enhanced expression and activity of VR1 in response to capsaicin and low pH	42
HPK1	¹⁶⁶ LARRL S FIGTP ¹⁷⁶ (Ser171)	Activation of JNK/SAPK and NF- KB pathways in the adaptive immune response	43
TLR5	800LMKHQSIRGFV810 (Ser805)	p38 MAPK activation and increased production and release of inflammatory cytokines e.g. IL-8	83
c-Jun	⁵³ LRAKNSDLLTS ⁶³ (Ser58)	Suppression of JNK signaling pathway, possibly by modulation of c-Jun phosphorylation by JNK	84,85
SPHK2	416LHRSVSDLPLP426 (Ser421)	Nuclear export	46

Avkiran, M et. al. (2008) Circ Res

PKD1 Modification Sites and Domains

PKD is responsive to physiologically important stimuli and may regulate fundamental processes such as cell proliferation, motility, death, cardiac hypertrophy and inflammation.

- General gene and protein analysis on PKD1
- Structure prediction and analysis on PKD1
- □ Signaling pathways analysis on PKD

- The multitude of PKD domains and the wide variety of proteins that interact with them point to multiple and diverse biological roles for the enzyme.
- PKD emerges as a valuable target for development of novel therapeutic approaches in common diseases, including cardiac hypertrophy and cancer.

Information regarding the structure of this kinase, which is still absent from the field, will greatly facilitate the design of specific drugs that modulate PKD signaling.

Thank you