A trial of Bioinformatic analysis in Serotonin Receptor gene family

王魏然

刘绍峰

1. Background: Serotonin Receptors

neurotransmitter serotonin

GPCR structured serotonin

- I. Importance:
- Serotonin receptors regulate neuronal signaling by exciting or inhibiting its neurotransmitter release.
- There are several animal neuronal activity coupled with serotonin receptors, including pain perception, angry expression etc.

1. Background: Serotonin Receptors

Family	Туре	Mechanism	Potential
<u>5-HT₁</u>	<u>G_i/G_o-protein coupled.</u>	Decreasing cellular levels of <u>cAMP</u> .	Inhibitory
<u>5-HT₂</u>	<u>G_q/G₁₁-protein coupled.</u>	Increasing cellular levels of <u>IP₃</u> and <u>DAG</u> .	Excitatory
<u>5-HT₃</u>	Ligand-gated <u>Na⁺</u> and <u>K⁺</u> cation channel.	Depolarizing plasma membrane.	Excitatory
<u>5-HT₄</u>	<u>G</u> protein coupled.	Increasing cellular levels of <u>cAMP</u> .	Excitatory
<u>5-HT₅</u>	<u>G_i/G_o-protein coupled.^[6]</u>	Decreasing cellular levels of <u>cAMP</u> .	Inhibitory
<u>5-HT₆</u>	<u>G</u> protein coupled.	Increasing cellular levels of <u>CAMP</u> .	Excitatory
<u>5-HT₇</u>	<u>G</u> protein coupled.	Increasing cellular levels of <u>cAMP</u> .	Excitatory

Eur J Pharmacol. **361** (2–3): 299–309.

II. Diversity:

- There are 15 types of serotonin receptors, 14 of which are GPCRs. It is complicated that some serotonin receptor excite neuronal activity while others inhibit, which can be reflected by their protein diversity in sequence and protein structure.
- Our interests lie in the relationship between the two.

2. Procedures

- 1. List all members of serotonin receptor family;
- 2. Evolutionary distribution of serotonin family members;
- 3. Analysis of PTM source of serotonin receptor functional diversity;
- 4. GPCR TM analysis of serotonin receptor to reveal its bifurcation on G protein subtype selection and the output distinction in nervous system

Background: Structural Overview of GPCR-members of Serotonin Receptors

2RH1

Fig. beta-2 adrenergic receptor (2nd crystalized GPCR)

Most Serotonin Receptors are GPCRs, which are integral membrane protein that transduce signals inward.

- 1. N-terminal:
- 7 helical, hydrophobic TM;
- 3 extra- and 3 intra-cellular loops;
- barrel-like ligand binding domain;
- second extra-cellular loop serves as 'lid' for the ligand binding cavity;
- 2nd and 3rd intracellular loops are within the GEF domain, which are key to G-protein association
- At rest, inactive GDP-Galpha associates with GEF domain
- Upon ligand bound, a conformational change leads to GDP-GTP exchange of G protein.

Background:

Structural Overview of GPCR-members of Serotonin Receptors

Fig. highly diverse C-termini function of GPCR(2nd crystalized GPCR)

N-termini are highly variable in seq, but diverse in its interaction with intracellular protein network, by virtue of its rich PTMs.

2. C-terminal:

Highly variable in sequence and PTM;

- Glycosylation Important for trafficking etc.
- Phosphorylation alternative pathway switch from Gprotein type to beta-arrestin pathways
- Palmytoylation or lipidation hydrophobic acryl group addition onto cystein, critical for signal complex stabilization.

First question of interest:

The sequence source of Serotonin receptor functional diversity

Our first question of interest is:

What is the source of functional diversity of serotonin receptor family?

Candidtate answers:

- 1. PTMs;
- 2. Conformational distinctiveness;
- 3. special sequence features.

K-alian (local mode) Gap Open: 53.90 Gap Extension: 8.52 Terminal Gap: 4.42 Bonus Score: 0.02

Serotonin Receptor Feature: Glycosylation diversity

Serotonin Receptor Feature: phosphorylation

It is shown that this consensus pY is located between 3rd and 4th TM domains, the sites where they interact with Gs proteins.

Serotonin Receptor Feature: sequence repeats

Polydot command from Weblab of cbi: align on the whole sequence of self

GS repeats: same loci same numbers

The second question of interest:

Why Galpha are different among Serotonin receptors

- Functional Selectivity theory: It is the ligand diversity that determines the distinctiveness in output types.
- However, it is difficult to apply this on case of serotonin receptors, since their ligands are the same while their outputs are not.
- In this case, some SRs are excitatory in neuronal signaling regulation while others are inhibitory.
- Therefore, our second question of interest is whether this difference could be related to the sequence bifurcation in the interface that interacts with the G proteins.
- Notice: it is only in theory prediction, and further evidence from experiments are required to demonstrate them.

Serotonin Receptor Feature: G protein interacting sequence and G subtype

结合	Gs/G	a		Г	1			1					Г		1		¥	口.	拍招:Ja		しんたけ
	, -	-	1 2	4	6	5	' 8	10	12	1	4	16	8	2	1		有	巴:	依//filde	ntity	口例
sp 075Z89	5HT2A BO	[1	DRY	v	AI	-	, Q N	P 1	ΙH	нз	s -	RF	N S	S R	-						18]
sp 046635	5HT2A CAI	- [1	DRY	v	ΑI	- 1	οN	ΡĴ	ΙН	нз	s -	RF	N S	S R	-						18]
sp P35382 5	5HT2A CAV	[1	DRY	v	ΑI	- 1	QΝ	ΡĴ	ΙН	нз	s -	RF	N S	S R	-						18]
sp P18599 5	5HT2A_CRI	[1	DRY	v	ΑI	- 1	QΝ	ΡĴ	ΙН	нз	s -	RF	N S	S R	-						18]
sp P28223 5	5HT2A_HUN	[1	D R Y	v	ΑI	- 1	QΝ	ΡŪ	ΙН	нз	s -	RF	N S	S R	-						18]
sp P50128 5	5HT2A_MAC	[1	D R Y	v	ΑI	- 1	QΝ	ΡŪ	ΙH	нε	s -	RF	N S	S R	-						18]
sp P35363 5	5HT2A_MOL	[1	DRY	v	ΑI	- 1	QΝ	ΡĴ	ΙH	нз	s -	R F	N S	S R	-						18]
sp Q5R4Q6	5HT2A_PO	[1	DRY	v	ΑI	- 1	QΝ	ΡĴ	ΙH	нз	s -	RF	N S	S R	-						18]
sp P14842 5	5HT2A_RAT	[1	D R Y	v	ΑI	- 1	QΝ	ΡĴ	ΙH	нз	s -	R F	N S	S R	-						18]
sp P41595 5	5HT2B_HU№	[1	D R Y	Ι	ΑI	- 1	кк	ΡĴ	ΙQ	A	- N	QΥ	ΝS	S R	-						18]
sp Q02152	5HT2B_MO	[1	DRY	Ι	ΑI	- 1	кк	ΡĴ	ΙQ	A I	V -	QC	N S	S R	-						18]
sp P30994 5	5HT2B_RAT	[1	DRY	Ι	ΑI	- 1	кк	ΡĴ	ΙQ	A	V -	QC	N S	S R	-						18]
sp Q8UUG8	5HT2B_TE	[1	DRY	Ι	ΑI	- 1	кк	ΡJ	ΙQ	нs	S -	QΥ	κs	S R	-						18]
sp P28335 5	5HT2C_HU№	[1	DRY	V	ΑI	- 1	RΝ	ΡJ	ΙE	нs	S -	R F	N S	S R	-						18]
sp P34968 5	5HT2C_MOL	[1	DRY	V	ΑI	- 1	RΝ	ΡI	ΙE	нз	S -	R F	N S	S R	-						18]
sp Q5IS66 5	5HT2C_PAN	[1	DRY	V	ΑI	- 1	RΝ	ΡI	ΙE	нs	S -	R F	N S	S R	-						18]
sp P08909 5	5HT2C_RAT	[1	DRY	V	ΑI	- 1	RΝ	P 1	ΙE	H S	S -	R F	ΝS	S R	ŀ						18]
sp 070528	5HT4R_CAL	[1	DRY	Y	ΑI	C	СQ	ΡI	LV	YF	२ -	NK	МТ	r P	ŀ						19]
sp Q13639	5HT4R_HUI	[1	DRY	Y	ΑI	C	СQ	ΡI	LV	YF	२ -	NK	МТ	r P	ŀ						19]
sp P97288 5	5HT4R_MOL	[1	DRY	Y	ΑI	C	СQ	ΡI	LV	YF	२ -	NK	МТ	r P	-						19]
sp Q62758	5HT4R_RA1	[1	DRY	Y	ΑI	C	СQ	ΡI	LV	YF	R -	NK	МТ	ΓP	-						19]
sp P50406 5	5HT6R_HU№	[1	DRY	L	LI	- 1	LS	ΡI	L R	Y	C L	RM	ΤF	^L	Ŀ						19]
sp Q9R1C8	5HT6R_MO	[1	DRY	L	LI	- 1	LS	ΡI	LR	Y	C L	RM	ΤA	A P	-						19]
sp Q5IS65 5	5HT6R_PAN	[1	DRY	L	LI	-	LS	ΡI	LR	Y	< L	RM	ΤF	P	-						19]
sp P31388 5	5HT6R_RAT	[1	DRY	L	LI	-	LS	ΡI	LR	Ył	< L	RM	ΤA	A P	-						19]
sp P50407 5	5HT7R_CAV	[1	DRY	L	G I	-	ΤR	ΡI	LT	YF	v د	RQ	NG	GΚ	-						19]
sp P34969 5	5HT7R_HUN	[1	DRY	L	G I	-	TR	ΡI	LT	YF	v د	RQ	NG	зĸ	С	:					20]
sp P32304 5	5HT7R_MOL	[1	DRY	L	G 1	-	TR	ΡI	LT	YF	• v	RQ	NG	зĸ	C						20]
sp P32305 5	5HT7R_RAT	[1	DRY	L	G I	-	TR	PI	LT	YF	2 V	RQ	NG	G K	C.						20]
sp10915591	SHT7R XEN	[1]	DRY		GI	-	TR	PI	LT	YF	P A	RO	NĢ	зĸ	L						201
					J			J							J						
IL-3	CHARC	GE		0)		+ C	or (0				0 () н	⊦						
	CHAK	36		Ν	I		-						N	ΡN	J						
	POLAP	5		IN											4						

Serotonin Receptor Feature: G protein interacting sequence and G subtype

结合	Gi/Go)		,					1							27	着色	<u>.</u>	根据ident	ity比例
			1 2	4	6	;	8	10	12	14	4	16	8	2	1					1 · - · · ·
sp P30966	SHT5A_MOL	[1	DRY	w	S I	-	ΤR	нι	LE	ΥŤ	Ľ	R T	ĸк	R	-					19]
sp P35364	5HT5A_RAT	[1	DRY	w	sΙ	-	ΤR	нι	LΕ	YТ	Ľ	R A	ĸк	R	-					19]
sp P31387	5HT5B_MOL	[1	DRY	w	ТΙ	-	ΤR	нι	LQ	YТ	Ľ	RТ	R S	R	-					19]
sp P35365	SHT5B_RAT	[1	DRY	w	ТΙ	-	ΤR	нι	LQ	YТ	Ľ	RТ	R R	R	-					19]
sp 042385	5H1AA_TAF	[1	DRY	w	ΑI	-	тD	P 1	ΙD	γv	/ - [']	Νĸ	RТ	Р	-					18]
sp Q6XXX9	5HT1A_CA	[1	DRY	w	ΑI	-	тD	P 1	I D	γv	- 1	Νĸ	RТ	Р	-					18]
sp Q9N297	5HT1A_GO	[1	DRY	w	ΑI	-	тD	P 1	I D	γv	- 1	NΚ	RТ	Р	-					18]
sp Q0EAB6	5HT1A_HO	[1	DRY	w	ΑI	-	тD	P 1	I D	γv	1 -	Νĸ	RТ	Р	-					18]
sp P08908	5HT1A_HUN	[1	D R Y	w	ΑI	-	тD	P 1	I D	γv	- 1	NΚ	RТ	Р	-					18]
sp Q64264	5HT1A_MO	[1	DRY	w	ΑI	-	тρ	Ρ]	I D	γv	- 1	ΝK	RТ	Р	-					18]
sp Q9N298	5HT1A_PAI	[1	DRY	w	ΑI	-	тD	Ρ]	ΙD	γv	- 1	ΝK	RТ	Р	-					18]
sp Q9N296	5HT1A_POI	[1	D R Y	w	ΑI	-	тρ	Ρ 1	I D	γv	- /	ΝK	RТ	Р	-					18]
sp P19327	5HT1A_RAT	[1	DRY	w	ΑI	-	тD	Ρ 1	I D	γV	- 1	ΝK	RТ	Р	-					18]
sp Q6XXY0	5HT1A_VUI	[1	DRY	w	ΑI	-	тD	Ρ 1	I D	γV	- 1	ΝK	RТ	Р	-					18]
sp Q98998	5HT1A_XEN	[1	DRY	w	ΑI	-	тD	Ρ 1	I D	γV	- 1	ΝK	RТ	Р	-					18]
sp P79250	5HT1B_CAN	[1	DRY	w	ΑI	-	тD	A١	νE	Y S	; -	ΑK	RТ	Р	-					18]
sp P35404	5HT1B_DID.	[1	DRY	w	ΑI	-	тD	A١	νE	Y S	; -	ΑK	RТ	Р	-					18]
sp Q588Y6	5HT1B_FEL	[1	DRY	w	ΑI	-	тD	A١	νE	Y S	; -	ΑK	RТ	Р	-					18]
sp Q9N2B7	5HT1B_GO	[1	DRY	w	ΑI	-	тD	A١	νE	Y S	; -	ΑK	RТ	Р	-					18]
sp Q0EAB5	5HT1B_HO.	[1	DRY	w	ΑI	-	тD	A١	V E	ΥS	; -	ΑK	RТ	Р	-					18]
sp P28222	5HT1B_HU№	[1	DRY	w	ΑI	-	тD	A١	νE	ΥS	; -	ΑK	RТ	Р	-					18]
sp P60020	5HT1B_PAN	[1	DRY	w	ΑI	-	тD	A١	νE	ΥS	; -	ΑK	RТ	Р	-					18]
sp P56496	5HT1B_SPA	[1	DRY	w	ΑI	-	тD	A١	νE	ΥS	; -	ΑK	RТ	Р	-					18]
sp Q6XXX8	5HT1B_VU	[1	DRY	w	ΑI	-	тD	A١	νE	ΥS	; -	ΑK	RТ	Р	-					18]
sp P11614	5HT1D_CAN	[1	DRY	w	ΑI	-	тD	ΑI	LΕ	ΥS	; -	ΚR	RТ	Α	-					18]
sp Q60484	5HT1D_CAL	[1	DRY	w	ΑI	-	тD	A I	LΕ	Y S	; -	ΚR	RТ	Α	-					18]
sp P79400	5HT1D_PIG	[1	DRY	w	ΑI	-	тD	A I	LΕ	Y S	; -	ΚR	RТ	Α	-					18]
sp P49145	5HT1D_RAE	[1	DRY	w	ΑI	-	тD	A I	LΕ	Y S	; -	ΚR	RТ	Α	-					18]
sp P28565	5HT1D_RAT	[1	DRY	w	ΑI	-	тD	A I	LE	Y S	; -	ΚR	RТ	Α	-					18]
sp P79748	5HT1D_TAK	[1	DRY	w	ΑI	-	тD	A I	LE	Y S	; -	ΚR	RТ	М	-					18]
11-3	CHARG	F		_			0-						+ () ()					
	20008						0-													
	POLAR			Ν			٩N						NF	אי	1					

		1					
	124	6 8	10 12 1	4 16 18 2	22 24	26	
		1 1		10 10 2			
sp Q75Z89 5HT2A_BOVIN 5-hy [1	FLKI	AVW	TISVGI	SMPIP	V F		21]
sp 046635 5HT2A_CANFA 5-hy [1	FLKI	AVW	TISVGI	SMPIP	V F		21]
sp P28223 5HT2A_HUMAN 5-hy [1	FLKI	AVW	TISVGI	SMPIP	V F	-	21]
sp P50128 5HT2A_MACMU 5-hy [1	FLKI	AVW	TISVGI	SMPIP	V F	-	21]
sp P35363 5HT2A_MOUSE 5-hy [1	FLKI	AVW	TISVGI	SMPIP	V F	-	21]
sp P50129 5HT2A_PIG 5-hydro. [1	FLKI	AVW	TISVGI	SMPIP	V F	-20	21]
sp Q5R4Q6 5HT2A_PONPY 5-hy [1	FLKI	AVW	TISVGI	SMPIP	V F	120	21]
sp P14842 5HT2A_RAT 5-hydro [1	FLKI	AVW	TISVGI	SMPIP	V F	128	21]
sp P35382 5HT2A_CAVPO 5-hy [1	FLKI	AVW	TISVGI	SMPVP	V F	(12)	21]
sp P18599 5HT2A_CRIGR 5-hyc [1	FLKI	AVW	TISVG	SMPIP	V F	12	21]
sp P41595 5HT2B_HUMAN 5-hy [1	FIKI	VVW	LISIGI	AIPVP	I K	725	21]
sp Q02152 5HT2B_MOUSE 5-hy [1	FIKI	VVW	LISIGI	AIPVP	I K	22	21]
sp Q29005 5HT2B_PIG 5-hydro [1	FIKI	VVW	LISIG-			926	13]
sp P30994 5HT2B_RAT 5-hydro [1	FVKI	VVW	LISIGI	AIPVP	I K	120	21]
sp Q8UUG8 5HT2B_TETFL 5-hyi [1	MLKI	A L V W	LISICI	AIPIP	I K	125	21]
sp Q60F97 5HT2C_CANFA 5-hy([1	IMKI	A I V W	AISIG	/SVPIP	V I I V	120	21]
sp P28335 5HT2C_HUMAN 5-hy [1	ΙΜΚΙ	A I V W	AISIG	/SVPIP	V I I V	120	21]
sp P34968 5HT2C_MOUSE 5-hy [1	IMKI	A I V W	AISIG	/SVPIP	V I I V	120	21]
sp Q5IS66 5HT2C_PANTR 5-hyc [1	ΙΜΚΙ	A I V W	AISIG	/SVPIP	V I I V	928	21]
sp P08909 5HT2C_RAT 5-hydro [1	ΙΜΚΙ	A I VW	AISIG	SVPIP	V I I V	122	21]
sp 070528 5HT4R_CAVPO 5-hy [1	ALML	GGCW	VIPMFI	SFLPI	M Q G W N	125	24]
sp Q62758 5HT4R_RAT 5-hydrc [1	ALML	GGCW	VIPMFI	SFLPI	M Q G W N	725	24]
sp Q13639 5HT4R_HUMAN 5-hy [1	ALML	GGCW	VIPTFI	SFLPI	M Q G W N	125	24]
sp P97288 5HT4R_MOUSE 5-hy [1	ALML	GGCW	VLPMFI	SFLPI	M Q G W N	725	24]
sp Q29006 5HT4R_PIG 5-hydro [1	AVLL	GCW	AIPVLI	SFLPI	M Q G W N	729	24]
sp P50406 5HT6R_HUMAN 5-hy [1	LALV	GAW	SLAALA	SFLPL	LLGWHI	L	26]
sp Q5IS65 5HT6R_PANTR 5-hyc [1	LALV	GAW	SLAALA	SFLPL	LLGWHI	L	26]
sp Q9R1C8 5HT6R_MOUSE 5-h) [1	LALI	GAW	SLAALA	SFLPL	LLGWHI	L	26]
sp P31388 5HT6R_RAT 5-hydro [1	LALI	GAW	SLAALA	SFLPL	LLGWHI	L	26]
sp P50407 5HT7R_CAVPO 5-hy [1	РКМІ	. s v w	LLSASI	TLP-P	LFGWAG	-	24]
	and it states				st 1 99 - 1985	10 - C	1.02

IL-4

	1.2.1	0 0 10 10 14 10 10 00	00 04 00	
	1 2 4		22 24 20	
sp Q6XXX8 5HT1B_VULVU 5-hy [AVMI	LVWVFSISISLP - PF	F-WRQ-	23]
sp 008892 5HT1B_CAVPO 5-hy [1	AGMI	LVWVFSICISLP - PF	F-WRQ-	23]
sp P46636 5HT1B_CRIGR 5-hy([1	AIMI	LVWVFSISISLP - PF	F-WRQ-	23]
sp P35404 5HT1B_DIDMA 5-hyc [1	AGMI	MVWVFSVSISMP-PL	F-WRQ-	23]
sp P28334 5HT1B_MOUSE 5-hy [1	AIMI	YLVWVFSIS <mark>ISLP</mark> -PF	F-WRQ-	23]
sp P28564 5HT1B_RAT 5-hydro [AIMI	YLVWVFSIS <mark>IS</mark> LP-PF	F-WRQ-	23]
sp P49144 5HT1B_RABIT 5-hyc [AIMI	L V W V F S I C I S L P - P F	F-WRQ-	23]
sp P56496 5HT1B_SPAEH 5-hyc [AVMI	LVWVFSISISLP - RF	F-WRQ-	23]
sp P11614 5HT1D_CANFA 5-hyc [:	AVMI	TVWVISICISIP - PL	F-WRQ-	23]
sp Q60484 5HT1D_CAVPO 5-hy [:	GAMI	A VWVISICISIP - PL	F-WRQ-	23]
sp P28221 5HT1D_HUMAN 5-hy [:	ATMI	IVWAISICISIP - PL	F-WRQ-	23]
sp Q61224 5HT1D_MOUSE 5-hy [:	AAMI	AVWIISICISIP - PL	F-WRQ-	23]
sp P79400 5HT1D_PIG 5-hydro. [:	AAMI	IVWAISICISIP - PL	F-WRQ-	23]
sp P49145 5HT1D_RABIT 5-hyc [A A M I	VVWAISICISIP - PL	F-WRQ-	23]
sp P28565 5HT1D_RAT 5-hydro [AAMI	A VWAISICISIP - PL	F - W R Q -	23]
sp P79748 5HT1D_TAKRU 5-hy([1	AVMV	VVWVISISISMP-PL	F - WRQ -	23]
sp Q6VB83 5HT1E_CAVPO 5-hy [GLMI	. T V W T I S I F I S M P - P L	F - W R S H	24]
sp P28566 5HT1E_HUMAN 5-hy [1	ALMI	. T V W T I S I F I S M P - P L	F - W R S H	24]
sp Q9N2B6 5HT1E_PANTR 5-hy [ALMI	. T V W T I S I F I S M P - P L	F - W R S H	24]
sp Q29003 5HT1E_PIG 5-hydro [1	GLMI	. T V W T I S I F I S M P - P L	F - W R S H	24]
sp 008890 5HT1F_CAVPO 5-hy [1	GIMI	IVWIISVFISMP-PL	F - W R H -	23]
sp P30939 5HT1F_HUMAN 5-hyi [GIMI	IVWIISVFISMP-PL	F - W R H -	23]
sp Q9N2D9 5HT1F_PANTR 5-hy [GIMI	IVWIISVFISMP-PL	F - W R H -	23]
sp Q02284 5HT1F_MOUSE 5-hy [1	GIMI	IVWVISVFISMP-PL	F - W R H -	23]
sp P30940 5HT1F_RAT 5-hydro. [GITI	T V W V I S V F I S V P - P L	F - W R H -	23]
sp P47898 5HT5A_HUMAN 5-hy [:	NVMI	A L T W A L S A V I S L A P L L	FGWGE -	25]
sp P30966 5HT5A_MOUSE 5-hy [1	NVMI	LTWALSTVISLAPLL	FGWGE-	25]
sp P35364 5HT5A_RAT 5-hydro [NVMI	LTWALSAVISLAPLL	FGWGE-	25]
sp P31387 5HT5B_MOUSE 5-hy [ALMI	ITWALSALIALAPLL	FGWGE -	25]
sp P35365 5HT5B_RAT 5-hydro [ALMI	ITWALSALIALAPLL	FGWGE-	25]

IL-4

Thank You for your attention !

工作分配:

杨威,五羟色胺受体和GPCR背景知识,五羟色胺受体家族同源序列的进化树分析,所有家族成员的局部比对;

王魏然,五羟色胺受体同源序列翻译后修饰(磷酸化,糖基化,GS重复序列) 位点的多态性分析;

刘少锋,五羟色胺受体桐原序列的跨膜区重要序列多态性分析,G蛋白识别差异分析;

在这里再次感谢以上组员的合作与支持,预祝本次ppt展示圆满成功!