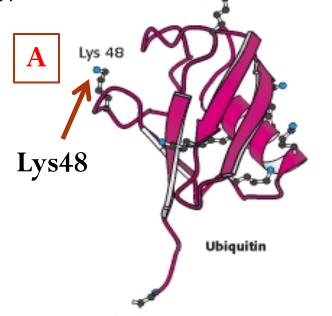


Bioinformatics Analysis of E3 Ubiquitin Ligase in *Oryza sativa*

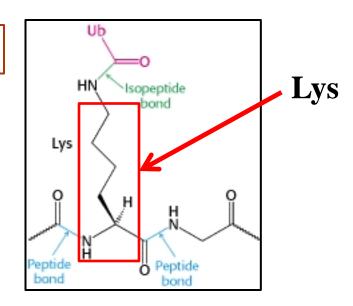
Group 12: 江红梅、任磊、

师翠兰、周晶

Reporter: 任磊

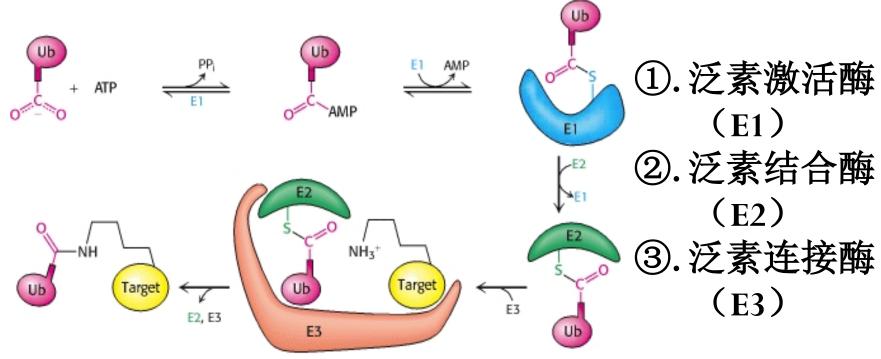

Content

- 1.Background
- 2.Reason
- 3.Gene Analysis
- 4. Protein Analysis
- 5.Acknowledgement


Background

1. What is ubiqutin and ubiqutin ligase

泛素(Ubiqutin, Ub): 是一种存在于大多数真核细胞中的小蛋白,它的主要功能是标记需要分解掉的蛋白质,使其被水解。



A为Ub的结构图,B为Ub与目标蛋白的结合方式

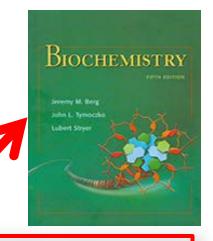
Background

泛素化(Ubiquitination),一共有三个酶参与

特点: ①依赖于ATP

②E1种类较少,多数真核只有一种或很少差别的E1

③E2、E3种类较多,但E2来自于同一家族,E3家族较多


Background

泛素连接酶E3主要有三大类:

主要根据连接酶中包含的结构域进行划分。

- ①、HECT结构域家族;
- ②、RING结构域家族;
- ③、U.box家族

以上内容来自NCBI-Bookshelf中的 Biochemistry 5th edition

2004年,阿龙·切哈诺沃、阿夫拉姆·赫什科、欧文·罗斯因发现了泛素调节的蛋白质降解过程而获得了诺贝尔化学奖。

Reason

ARTICLES

genetics

A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase

Xian-Jun Song^{1,2}, Wei Huang^{1,2}, Min Shi¹, Mei-Zhen Zhu¹ & Hong-Xuan Lin¹

文献背景:

中科院上海生物所一个小组,检测到一个控制水稻粒型和粒重的主效QTL-GW2。经过精细定位发现一个编码RING-E3泛素连接酶的新基因。研究发现当该基因功能缺失时水稻籽粒变宽,粒重增加。因此该基因与水稻产量密切相关。

Reason

存在问题:

该研究虽然证明了该基因(GW2)的表达与否影响了水稻籽粒的大小,但是,正如文中Discussion中描述的该基因和所产生的RING-E3泛素连接酶的遗传机制与作用机制所知甚少,且该酶的蛋白结构并未得到解析。

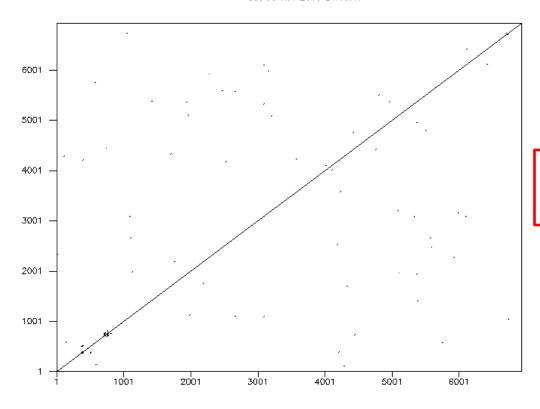
我们分析的目标:

- *1. 从核酸水平对该基因进行初步分析;
- *2. 从蛋白水平分析序列、结构特征;
- *3. 尝试利用同源模建,分析该酶的高级结构、
- 结合位点,以及核心作用区域等。
- 目的:为研究该酶的作用机制提供参考。

Reason

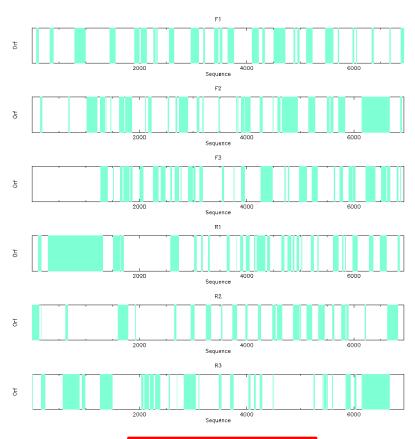
分析基础:

- ①、该基因全长, 6937bp;
- ②、mRNA序列,1278bp;
- ③、蛋白序列425aa。


采取的策略:

使用生物信息学软件预 测分析,并与已有信息 进行比较;

同时,利用生物信息学工具对未知信息进行预测。


使用Dottup查看基因结构

Dottup: raw::682897 vs raw::682898

无重复结构

使用多种方法预测ORF

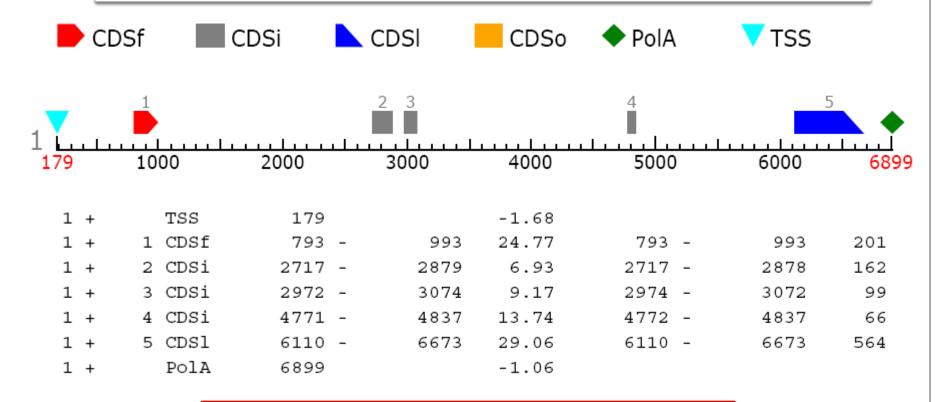
> 1 [403 - 996]

ATEVAVSLAVAAAETRPLFSSLLPFLVHSVAASCCSSREVSTSLSSHPEKAKKRKIIFQK KSSPRPRVVVPITPPPPLRVRVRIPPPPSPPPYVSTVRRRRRRRRRGSGEGFICGGGGR RREEGRSGRGMGNRIGGRRKAGVEERYTRPQGLYEHRDIDQKKLRKLILEAKLAPCYMGA DDAAAAADLEECPICFLV

> 2 [5936 - 6670]

AFFLLYSLLLERCKLYVKCCFIFEFRFLGINNKQSSCIAYRKVCIYFYPNTVNLFSEQEQ GSIGNPVCGNFMPVTEPSPRERQPFVPAASLEIPHGGGFSCAVAAMAEHQPPSMDFSYMA GSSAFPVFDMFRRPCNIAGGSMCNLESSPESWSGIAPSCSREVVREEGECSADHWSEGAE AGTSYAGSDIVADAGTMPQLPFAENFAMAPSHFRPESIEEQMMFSMALSLADGHGRTHSQ GLAWL

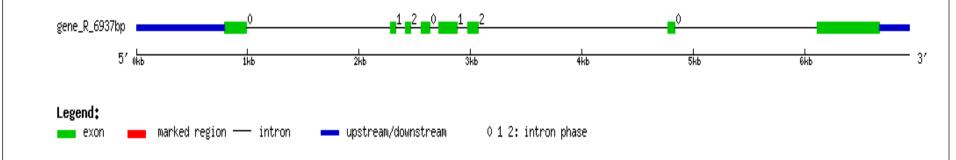
>_3 [6683 - 6150] (REVERSE SENSE)
SALPTTMPTLASVFFHDHLLKKEPWKTSSVLRCSPGGSGLAPWRSSRRKAAAAWSRHLPR
CLSPRSLFRPLHPPTSGQPSTLLLLLPLPCCSLVLSRSSSPVSSPDYTCFHQQCCMVAGT
CRKLGMRCCQPCKRSPYWVAGAQPLPQPHRKIHHHEVFLEKQLERMAGVHAEMAQLQA


> 4 [1359 - 298] (REVERSE SENSE)

LSKNNTNNPKTVPMSTEILAPKHCAWSSISITATHHRHSPQSNRSKSNQPPNRNAPRHHP ATRNPRPTLATTSTSSSITTKSHQKKREKKLKWKEAGGGSEEEGRDLFLPSTRHISPEAV LYQEADGALLEVGGGGGVVGAHVARRELGLEDQLPELLLVDVPVLVQPLRPRVPLLHPRL PPPPYPVPHPPPRSTLLPPPPSSSADETLTTPPPPPPPPPPHRRYIRWWRWWWYTHAY SERRRGGDGDDDARARRAFFLKNNFSFFGFLGVGGKGSGDLSAAATASRYAMHKERKKRR EERPCLCRCDCERDCDLCSLASAAAAAAAAAAVAIISVPEPHSRSLQRGGGLPV

Plotorf

Getorf


使用Softberry预测ORF

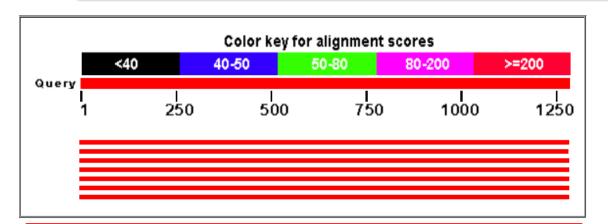
预测结果得到5个外显子,工1098bp 的CDS,编码365个氨基酸

实际的ORF分析

图中详细显示了外显子在序列中的分析,一共有8个外显子。

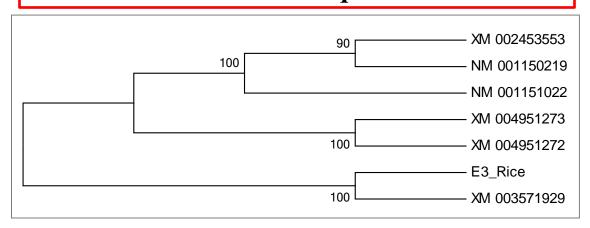
对ORF进行初步的统计分析

```
#CdsCount: 1
```

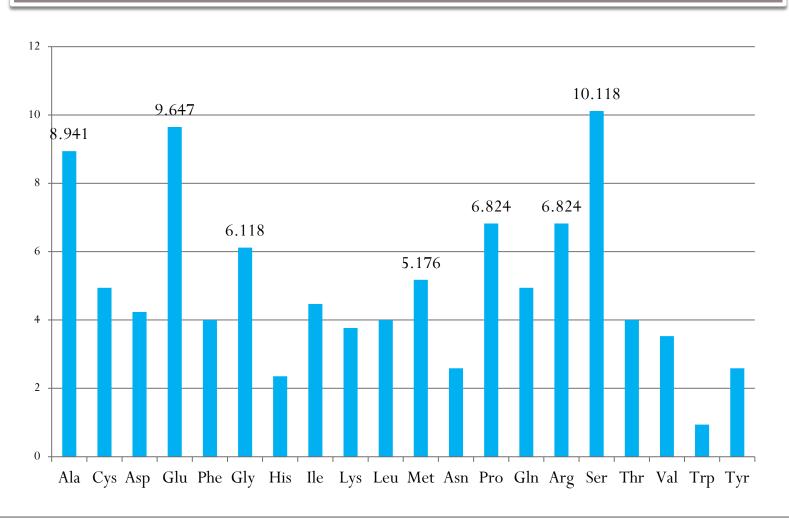

```
#Coding GC 52.82%
#1st letter GC 52.82%
#2nd letter GC 48.59%
#3rd letter GC 57.04%
```

```
BsaXI
  MwoI
  BglI
           MwoI
                                             MwoI
 BstMWI
           BstMWI
                                             BstMWI
 HpyF10VI HpyF10VI
                                             HpvF10VI
CAGGGGCTGTACGAGCACAGGGACATCGACCAGAAGAAGCTCCGGAAGCTGATCCTCGAG
                                                             120
GTCCCCGACATGCTCGTGTCCCTGTAGCTGGTCTTCTTCGAGGCCTTCGACTAGGAGCTC
        HpyF10VI
                                          HpyF10VI
        BstMWI
                                          BstMWI
        MwoI
                                          MwoI
```

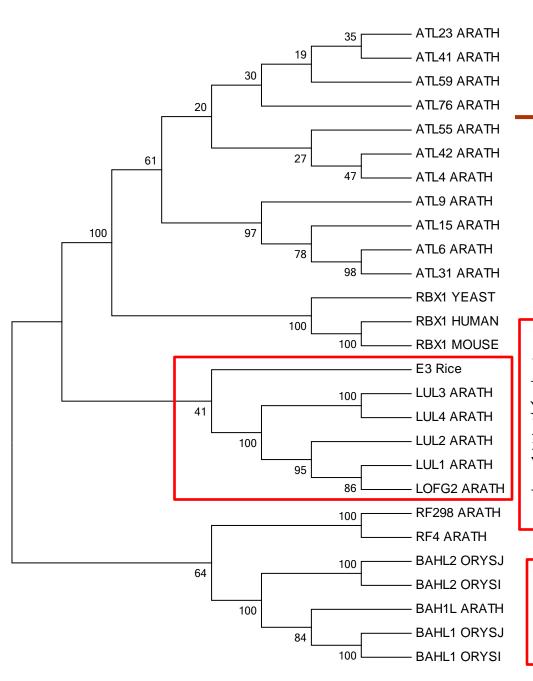
CUSP对密码子使 用情况分析


Remap对限制性酶切位点分析

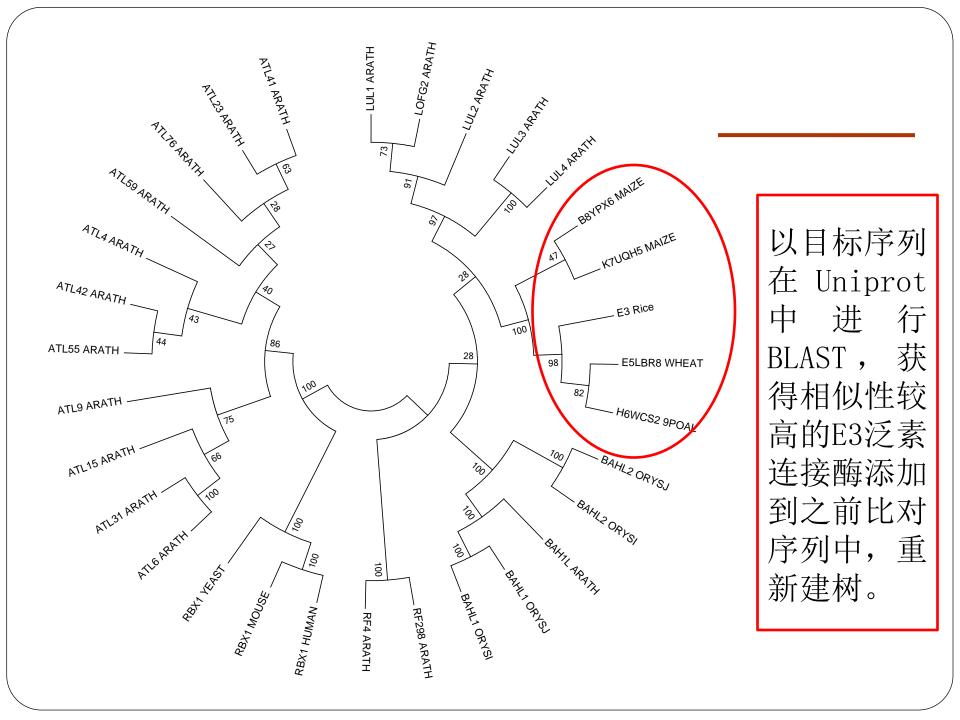
对ORF进行初步的统计分析


对mRNA序列进行比对,结果中所包含的多为未注释的基因.

Database: NCBI_refseq, E-value=0.001


对比对结果进行建树分析,可以发现,这个基因普遍存在于水稻、杂草、玉米、高粱等植物中。

利用Pepstats分析氨基酸组成

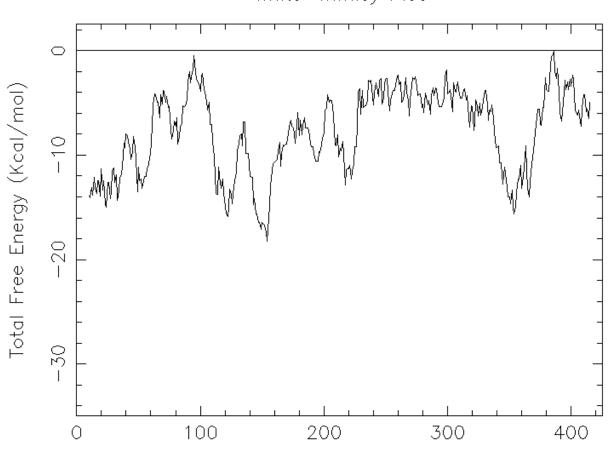

利用Pepstats分析氨基酸组成

Property	Residues	Number	Mole%
Tiny	(A+C+G+S+T)	145	34, 118
Small	(A+B+C+D+G+N+P+S+T+V)	218	51.294
Aliphatic	(Y+I+L+A)	89	20.941
Aromatic	(F+H+W+Y)	42	9, 882
Non-polar	(A+C+F+G+I+L+M+P+V+W+Y)	219	51.529
Polar	(D+E+H+K+N+Q+R+S+T+Z)	206	48. 471
Charged	(B+D+E+H+K+R+Z)	114	26.824
Basic	(H+K+R)	55	12.941
Acidic	(B+D+E+Z)	59	13.882

直接在Uniprot中检索E3 泛素连接酶RING家族,得 到26个结果,将得到结果 与目标序列比较,建树。

Uniprot检索策略: Family:RING and name:E3 and reviewed

以氨基酸序列比对分析进行建树分析


获得的E3 泛素连接酶(RING),与其他已报道RING家族E3泛素连接酶(reviewed)关系较远;

然而与其他部分未通过Swissprot审核的E3泛 素连接酶(RING)关系很近。

初步的判断: 所得到的的E3 泛素连接酶 (RING) 是一类不同于之前所报道的E3泛素链激酶 (RING),且广泛存在于植物中(玉米、小麦、水稻、高粱等都有报道)。

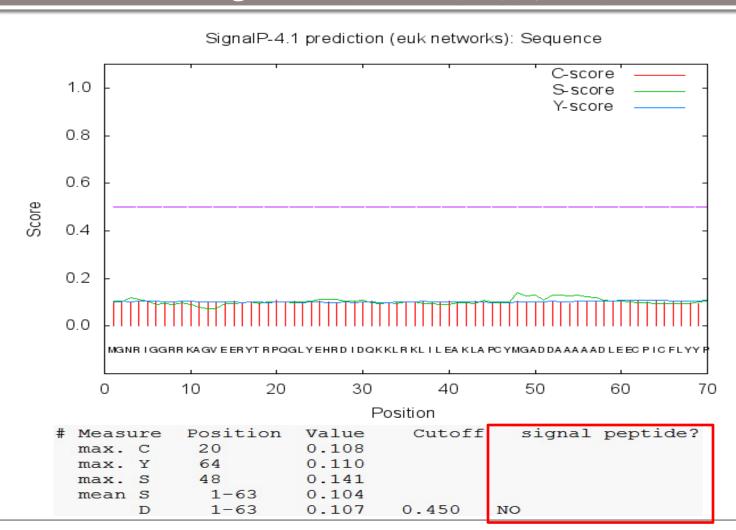
利用Octanol分析蛋白亲疏水性

可以看出,该 蛋白有较高的 亲水性。

利用Compute p1/Mw分析蛋白等电点和分子量

Compute pl/Mw

Compute pl/Mw


Theoretical pl/Mw (average) for the user-entered sequence:

10	20	3 <u>0</u>	40	5 <u>0</u>	6 <u>0</u>
MGNRIGGRRK	AGVEERYTRP				
7 <u>0</u>	8 <u>0</u>	9 <u>0</u>	10 <u>0</u>	11 <u>0</u>	12 <u>0</u>
ECPICFLYYP	SLNRSKCCSK	${\tt GICTECFLQM}$	KPTHTAQPTQ	${\tt CPFCKTPSYA}$	VEYRGVKTKE
13 <u>0</u>	140	15 <u>0</u>	16 <u>0</u>	17 <u>0</u>	18 <u>0</u>
ERSIEQFEEQ	KVIEAQMRMR	QQALQDEEDK	MKRKQNRCSS	SRTITPTKEV	EYRDICSTSF
19 <u>0</u>	20 <u>0</u>	21 <u>0</u>	220	23 <u>0</u>	24 <u>0</u>
SVPSYRCAEQ	ETECCSSEPS	${\tt CSAQTSMRPF}$	HSRHNRDDNI	DMNIEDMMVM	EAIWRSIQEQ
25 <u>0</u>	26 <u>0</u>	27 <u>0</u>	28 <u>0</u>	29 <u>0</u>	30 <u>0</u>
GSIGNPVCGN	FMPVTEPSPR	ERQPFVPAAS	LEIPHGGGFS	CAVAAMAEHQ	PPSMDFSYMA
31 <u>0</u>	32 <u>0</u>	33 <u>0</u>	34 <u>0</u>	35 <u>0</u>	36 <u>0</u>
GSSAFPVFDM	FRRPCNIAGG	SMCNLESSPE	SWSGIAPSCS	REVVREEGEC	SADHWSEGAE
37 <u>0</u>	38 <u>0</u>	39 <u>0</u>	40 <u>0</u>	41 <u>0</u>	420
AGTSYAGSDI	VADAGTMPQL	PFAENFAMAP	SHFRPESIEE	QMMFSMALSL	ADGHGRTHSQ

GLAWL

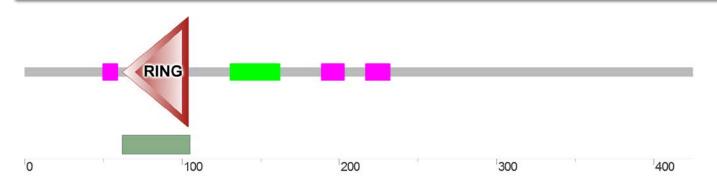
Theoretical pl/Mw: 5.32 / 47399.41

利用Signal P预测是否有信号肽

亚细胞定位


```
SeqID: E3
  Analysis Report:
                       Unknown
    CMSVM a
                       Unknown
    CWSVM a
                      Cvtoplasmic
    CytoSVM a
                       Unknown
    ECSVM a
                      Unknown
    ModHMM a
    Motif a
                      Unknown
    Profile a
                      Unknown
    SCL-BLAST a
                       Unknown
    SCL-BLASTe a
                      Unknown
    Signal a
                       Unknown
  Localization Scores:
                            7.50
    Cytoplasmic
    CytoplasmicMembrane
                            1.00
                            0.87
    Cellwall
    Extracellular
                            0.63
```

Final Prediction:

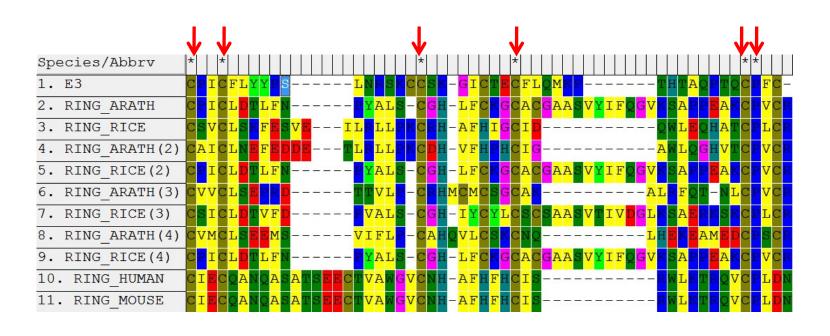

Cytoplasmic

```
[No details]
[No details]
[No details]
[No details]
[No internal helices found]
[No motifs found]
[No matches to profiles found]
[No matches against database]
[No matches against database]
[No signal peptide detected]
```

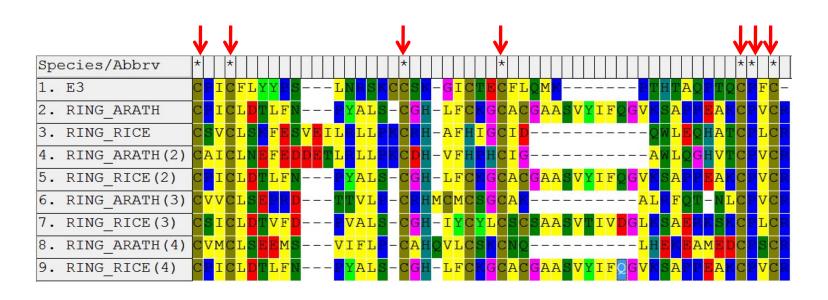
定位的结果: 存在于细胞质中

7.50

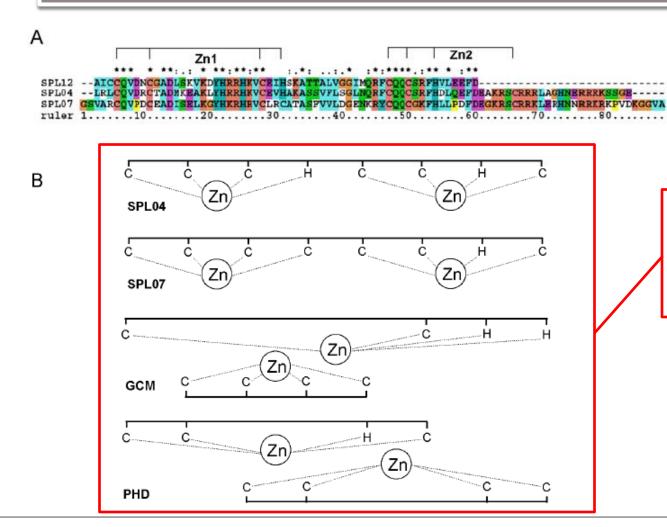
利用SMART分析保守结构域



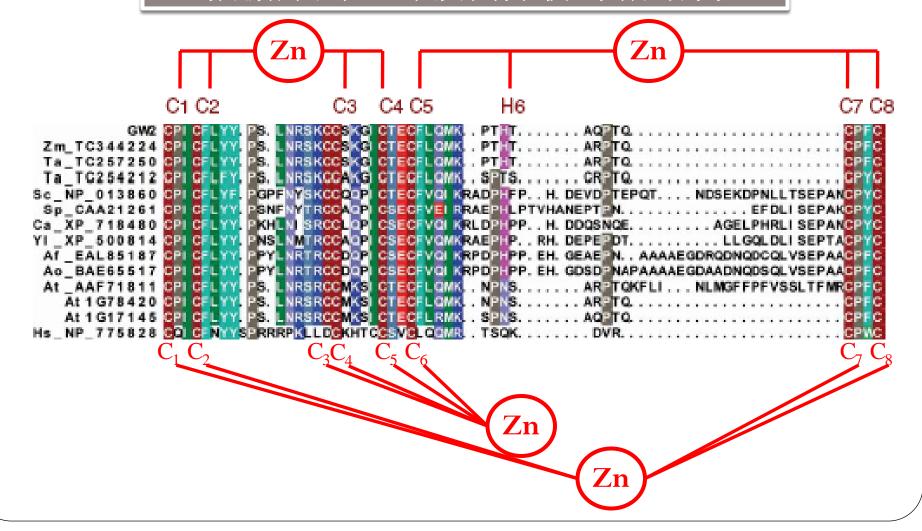
Confidently predicted domains, repeats, motifs and features:


Name	Start	End	E-value	
low complexity	50	58	N/A	
RING	62	104	0.726	
coiled coil	131	161	N/A	
low complexity	189	202	N/A	
low complexity	217	231	N/A	

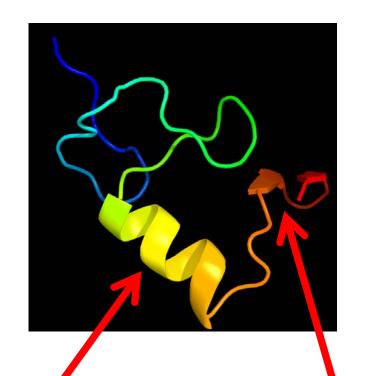
该序列中存在一个RING保守结构域。

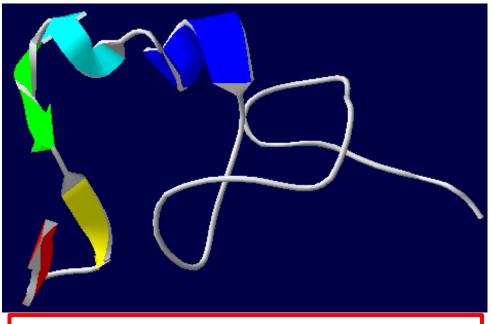

对RING结构域进行多序列比对分析

对RING结构域进行多序列比对分析



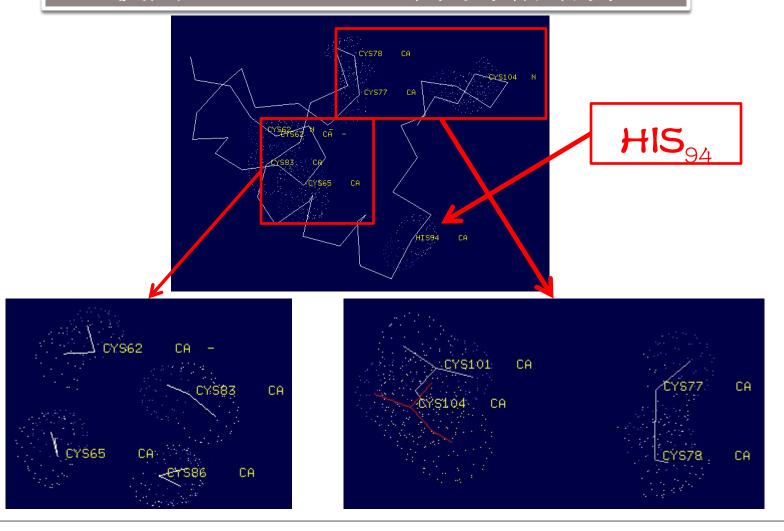
根据序列比对预测分析锌指结构



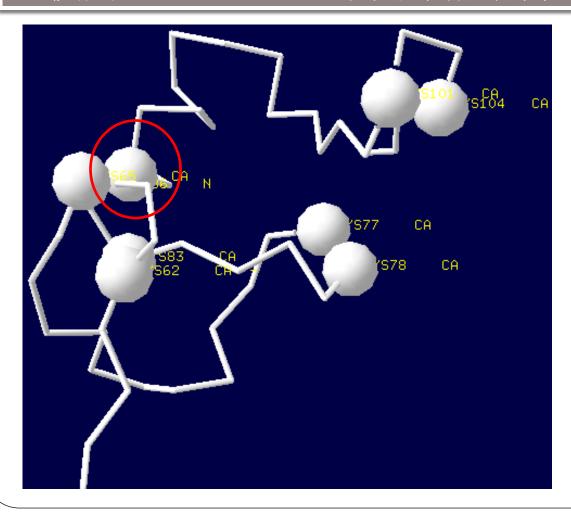

不同的结 构里锌指 结构会有 所差异

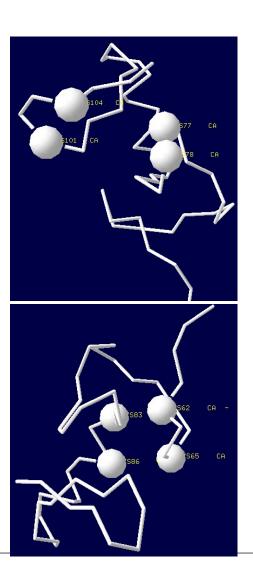
根据序列比对预测分析锌指结构

使用Phyre2预测对蛋白结构进行预测


实际只对58-107位置进行了预测

螺旋结构


折叠结构


Phyre²

使用SPDB-Viewer寻找锌指结构

使用SPDB-Viewer寻找锌指结构

Conclusion

- 一、分别从Gene、mRNA和氨基酸水平对序列信息进行了初步的统计分析;
- 二、从蛋白序列水平分析了结构特征信息;
- 三、通过蛋白结构预测软件对 RING结构域进行了预测分析,并 分析了其中的核心结构区域。

Reference

- 1. Xian-Jun SongA, Wei Huang, Min Shi etc., QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. *Nature genetics*, 39(5), 2007
- 2. NCBI_bookshelf, Biochemisty 5th edition
- 3. Parsimony Methods. Molecular Biology and EvolTamura K, Peterson D, Peterson N, Stecher G etc., MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Evolutionary Distance, and Maximum Parsimony Methods. *Molecular Biology and Evolution*. 2011, 28: 2731-2739.

Acknowledgement

感谢师翠兰提供的序列信息;

感谢周晶、江红梅、师翠兰为课题分析完

成所做的努力;

感谢罗老师一直以来认真、严谨的教导;

同时感谢大家对我的支持!