

Functional analysis and protein structure prediction of gene 6-SFT in Triticum aestivum

Team worker: 李脉泉 刘金栋

刘丹

4.Study progress

Structure and function of 6-SFT

1.Get the protein and gene sequence

2.The structure of 6-SFT

DOTTUP

Displays a wordmatch dotplot of two sequences

3.Prediction of promoter

element	function
TATA-box	core promoter element around -30 of transcription start
CAAT-box	common cis-acting element in promoter and enhancer regions
MYB	cis-acting regulatory element involved in drought-inducibility
LTR	cis-acting element involved in low-temperature responsiveness
GARE	gibberellin-responsive element
ABRE	cis-acting element involved in the abscisic acid responsiveness
Circadian	cis-acting regulatory element involved in circadian control

5. Alignment of 1-FFT、 1-SST、 6-SFT

Protein structure

1.Chose the model

Pachysandra terminal

	"	
XA	#	N
X.	<pre># Aligned_sequences: 2</pre>	Nee
\mathbb{Z}	# 1: 6-sft	
Y	# 2: E3PQS3_9MAGN	
~	# Matrix: EBLOSUM62	
1 .	# Gap_penalty: 10.0	D
	<pre># Extend_penalty: 0.5</pre>	
0.C.Y	#	
	# Length. 000	
	# Identity: 311/686	
•••	# Similarity: 425/686 (62.0%)	
- X	# Gans: 97/686	
1/1	# C 1F50 F	
EV/	#	
15	#	
	#	
	and the pat 1 chine of	

NEEDLE

Needleman-Wunsch global alignment of two sequences

Pachysandra terminalis

Triticum aestivum

4. Software reliability analysis

Through the analysis of the 6-SFT we can predict the function the gene

According to alignment we get the information

The prediction of the protein's structure can help us to know how it works

about 6-SFT in other species

Acknowledgments

ThanksMr. Luo for teaching usThankspkuThanksCAASThanksall students

Thanks

中国海北部第四

for your attention!

CIENCES

