

KcsA蛋白的生物信息学分析 Bioinformatics Analysis of KcsA Protein _{实用生物信息}学课程汇报 G14组

- 报告人:廖煜琳
- 组员:郭倩 廖煜琳 邱诗晴 陆奕霖
- 教师:罗静初
- 班级: 2018班
- 时间: 2019年1月12日

Transmembrane structure predication

结构预测 Structure predication

5

功能分析 Functional analysis 6

致谢 Acknowledgement

- KcsA是第一个在1998年由Roderick MacKinnon及其同事用X射线晶体学表征的钾离子通道。
- KcsA是钾离子通道蛋白中结构较为简单的一种,而且是原核生物体内的,相比于真核生物内的蛋白,更容易研究
- KcsA蛋白与Kv类型的通道蛋白具有强序列相似性,因此对KcsA的生物信息学 研究可以为后者的研究提供参考
- •目前, KcsA研究的重点是利用原核通道作为大型真核K +通道 (包括hERG) 的通道动力学模型

Uysal S, Cuello L G, Cortes D M, et al. Mechanism of activation gating in the full-length KcsA K+ channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29):11896-11899.

Transmembrane structure predication

预测跨膜结构

- WebLab 中Tmap 程序
- ExPASy上预测跨膜结构的软件

DAS—— Prediction of transmembrane regions

HMMTOP——Prediction of transmembranes helices and topology

Phobius—— Predict transmembrane topology and signal peptides

PredictProtein——Prediction of physico-chemical protein properties

SOSUI——Classification and secondary structure prediction

TMHMM——Prediction of transmembrane helices in proteins

Tmpred—membrane-spanning region prediction

TopPred——Topology prediction of membrane proteins

Tmap

HMMTOP

No	From	То	Length	Orientation
1	37	59	23	i—>0
2	99	121	23	o—>i

TMpred

No	From	То	Length	Score	Orientation
1	37	59	23	2507	o—>i
2	99	124	26	2204	i—>0
No	From	То	Length	Score	Orientation
No 1_	From 37	То 59	Length 23	Score 2351	Orientation i—>0

Phobius

Νο	From	То	Length	Orientation
1	28	49	22	o—>i
2	61	78	18	i—>0
3	90	115	26	o—>i
Signal	1	18		18
Region	1	4	4	N-Region
Region	5	13	9	H-Region
Region	14	18	5	C-Region

TMHMM

No	From	То	Length	Orientation
1	28	50	23	0—>i
2	66	88	23	i—>0
3	93	115	23	o—>i

PredictProtein

Νο	From	То	Length
1	2	19	18
2	29	49	21
3	87	109	23

DAS

Νο	From	То	Length	Qvalue	Note
1	8	17	10	8.980e-04	Potential Signal peptide
2	29	49	21	4.077e-11	
3	83	112	30	7.083e-08	

跨膜结构预测总结

软件	结果	评注
Tmap	2个	
НММТОР	2个	
TMpred	2个	
Phobius	3个	外加1个信号肽
ТМНММ	3个	外加1个信号肽
PredictProtein	3个	
DAS	3个	第1个跨膜螺旋可能为信号肽

Sequence alignment

Sequence alignment

- •利用Uniprot内置的blast功能寻找同源蛋白,发现有大量序列高度一致的蛋白质, 但基本都是细菌内的
- 在人和哺乳动物体内没有发现高度同源的蛋白质

- 人工检索了人类的钾离子通道和 人类的钠离子通道蛋白,并分别 通过Uniprot及NCBI blast工具进 行了序列比对
- 右图为uniprot的序列比对结果
- 其中前两个蛋白分别是人类的钾 离子通道蛋白和目标蛋白KcsA
- 最后一个蛋白是人类的钠离子通 道蛋白
- 研究这三个蛋白是希望看不同物 种的同类离子通道与相同物种的 不同离子通道之间的差别

Alignment

🖶 How to print an alignment in color

33		1 MLP SASRERPG YRAG VA	KCNK2_HUMAN	095069
57		1 1 MFP TG WRPKLSES IAASEMI.WQP MAAVAVVQ IGLLWF SPPVWG QD MV SPPPPIADE-P	GLIC_GLOVI	Q7NDN8
76 0		34 RLSFSTKPTVLASRVE-SDTTINVMKWKTVSTIFLVVVLYLIIG	KCNK2_HUMAN KCSA_STRUT	095069 P04334
116		58 -LTVNTGIYLIECYSLDDKAETFKVNAFLSLSWKDRRLAFDPVRSGVRVKTYEPEAIWIP	GLIC_GLOVI	Q7NDN8
111 0		77 ATVFKALBQPHEI — SQRTTIVIQKQTFISQHSC — WNS	KCNK2_HUMAN KCSA STRLI	095069 P0A334
176		117 EIRFVNVENARDADVVDISVSPDGTVQYLERFSARVLSPLDFRRYPFDSQTLHIYLIVRS	GLIC_GLOVI	Q7NDN8
169 0		112 TELDELIQQIVAAINAGIIPLG-NTSNQISHWDLGSSFFFAGTVITTIGFGNISPRTEG- 1	KCNK2_HUMAN KCSA_STRLI	095069 P0A334
225		177 VDT——RNIVLAV—DLEKVGKNDDVFLTGWDIESFTAV——-VKPANFA-LEDRLESK	GLIC_GLOVI	Q7NDN8
217 29		170GKIFCIIYALLGIPLFGFLLAGVGDQLGTIFGKGIAKVEDTFIKWNVS 1MPPMLSGLLARLVKLLL	KCNK2_HUMAN KCSA_STRLI	095069 P0A334
262		226 LDYQLRISRQYFSYIPNI-ILPMLFILFISWTAFWSTS *::	GTIC_GFOA1	Q7NDN8
272 80		218 QTKIRIISTIIFILFGCVLFVALPAIIFKHIEGWSALDAIYFVVITLTTIGFGDY 30 GAATVLL-VIVLLAGYLAVL-AERSAFGAQLIYYPRALWVSVETA	KCNK2_HUMAN KCSA_STRLI	095069 P0A334
320	*: : :		GEIC_GEONI	Q MUDINO
318 118 359		273 VAGGS——DIEY-LD-FYKPVWWW——-ILVGLAYFAAVLSMIGOWLKVISKKT 81 — LYPVTLWGRLVAVVVMVAGITSFGLVTAALATWFVGR—E 321 LKVFSOPARAASITRASRIAFPV-VFI — LANTILARLFRGF——————	KCNK2_HUMAN KCSA_STRLI GLIC_GLOVI	095069 P0A334 07NDN8
	: .: *.			
378 160 359		319 KEEVGEFRAHAAEWTANVTAEFKETRKR.SVETYDKFQRATSIRKK.SAELAGNHNQELT 119 QERRGHFVRHSEKAAEEAYTRTT-RALHERFDRLERMLDDNRR	KCNK2_HUMAN KCSA_STRLI GLIC_GLOVI	095069 P0A334 Q7NDN8
426 160		379 PCRRTLSVNHLTSERDVLPPLLKTESIYLNGLTPHCAGEELAVIENIK	KCNK2_HUMAN KCSA_STRLT	095069 P0A334
359		360	GLIC GLOVI	Q7NDN8

You may add additional sequences to this alignment (in FASTA format)

Tree

• 可以看到人类的钾离子通道蛋白和目标蛋白KcsA是在进化上更为接近的

• 人类的钠离子通道蛋白则与二者进化关系较远

Bownload - Graphics Sort by: E value T sp[O95069]KCNK2 HUMAN Potassium channel subfamily K member 2 OS=Homo sapiens OX=9606 GN=KCNK2 PE=1 SV=2 Sequence ID: Query 97447 Length: 426 Number of Matches: 2 Range 1: 156 to 192 Graphics Vext Match A Previous Match Expect Method Identities Positives Gaps Score 30.4 bits(67) 1e-05 Compositional matrix adjust. 12/37(32%) 23/37(62%) 0/37(0%) Query 74 TTVGYGDLYPVTLWGRLVAVVVMVAGITSFGLVTAAL 110 TT+G+G++ P T G++ ++ + GI FG + A + Sbjet 156 TTIGFGNISPRTEGGKIFCIIVALLGIPLFGFLLAGV 192 Vext Match 🔺 Previous Match 🔺 First Match Range 2: 256 to 364 Graphics Expect Method Identities Positives Score Gaps 25.0 bits(53) 0.001 Compositional matrix adjust. 25/115(22%) 45/115(39%) 25/115(21%) Query 65 ALWWSVETATTVGYG--DLYPVTLWGRLVAVVVMVAGITSFGLVTAALAT 112 A+++ V T TT+G+G DY +W ++ G+ F V + + Sbjet 256 AIYFVVITLTTIGFGDYVAGGSDIEYLDFYKPVVW FWILVGLAYFAAVLSMIGD 309 Query 113 WF---VGREQERRGHFVRHSEK---AAEEAYTRTTRALH-ERFDRLERMLDDNRR 160 W + +E G F H+ + + T R L E +D+ +R R+ Sbjet 310 WLRVISKKTKEEVGEFRAHAAEWTANVTAEFKETRRRLSVEIVDKFQRATSIKRK 364

- 上图为通过NCBI blast功能对人类钾离子通道和KcsA蛋白进行的双序列比对
- 二者显示了20-30%左右的序列一致性

How to print an alignment in color

POA334 Q9YDF8	KCSA_STRLI KVAP_AERPE	1 1	MSVERWVFPGC SVMARFRRGL SDLGGR VRNIGD VMEHPL VELG VS YAALLS VI VVVVEY T	0 60	
POA334 Q9YDF8	KCSA_STRLI KVAP_AERPE	1 61	MPPMLS MQLSGEYLVRLYLVDLILVIILWADYAYRAYKSGDPAGYVKKTLYEIPALVPAGLLALIE	6 120	:
POA334 Q9YDF8	KCSA_STRLI KVAP_AERPE	7 121	GLLARLVK-LLLGRHG SALHWRAAGAATVLLVIVLLAG SYL GHLAGLGLFRLVRLLRFLRILLIISRG SKFL SAIADAADKIRFYHLFGAVMLTVLYGAFA * ** ** ** **	46 180 :::*	*::
POA334 Q9YDF8	KCSA_STRLI KVAP_AERPE	47 181	AVLAERGAPGAQLITYPRALWWSVETATTVGYGDLYPVTLWGRLVAVVVMVAGITSFGLV IYIVEYPDPNSSIKSVFDALWWAVVTATTVGYGDVVPATPIGKVIGIAVMLTGISALTLL :.* *.:::::::::::::::::::::::::::::::::	106 240	
POA334 Q9YDF8	KCSA_STRLI KVAP_AERPE	107 241	TAALATWFV——GREQERRGHFVRHSEKAAEEAYTRTTRALHERFDRLERMLDDNRR— IGTVSNMFQKILVGEPEPSCSP——AKLAE—MVSSMSEEEFEEFVRTLKNLRRLE	160 291 *.: *	c ajje
POA334 Q9YDF8	KCSA_STRLI KVAP_AERPE	161 292	NSMK	160 295	

• 上图为 KcsA蛋白与KVAP蛋白的双序列比对,是一类电压门控的钾离子通道蛋白,是一个原核内的通道蛋白

Phylogenetic tree

系统发生树

- 选择KcsA与其他不同种类的钾离子通道蛋白进行多序列比对与系统发生树的构建。
- 电压门控钾离子通道 (Kv)
- 内向整流钾离子通道 (Kir)
- •双孔区域型钾离子通道 (K2P)
- 配体门控钾离子通道 (Kligand)

Kuang Q, Purhonen P, Hebert H. Structure of potassium channels[J]. Cellular and Molecular Life Sciences, 2015, 72(19):3677-3693.

构建蛋白的选择

Channel Type	Name	Organism	Entry
K ⁺ channel pore	KcsA	Streptomyces lividans	P0A334
	KCNA1	Human	Q09470
Kv	KCNA2	Human	P16389
	KVAP	Aeropyrum pernix	Q9YDF8
Vin	KCNJ1	Human	P48048
N II	KCNJ6	Human	P48051
VOD	Kcnk1	Human	O00180
K2P	Kcnk1	Rat	Q9Z2T2
Kligand	mthK	Methanothermobacter thermautotrophicus	O27564
8	KCMA1	Human	Q12791

- ●我们可以看到我们的研究对象KcsA蛋白在系统发生树上与电压门控钾 离子通道家族的蛋白相似性最高,可以理解为KV家族的蛋白与KcsA结 构比较相似,甚至有可能都是从KcsA蛋白一步步发展出来的。
- ●同时其他三类钾离子通道在树上与电压门控离子通道处于不同的枝上, 相似性不高,据此推断它们的结构与实现功能的方式并不相同。

Structure predication

Motif analysis

- UniProt
- InterPro
- Pfam
- HMM logo
- SMART
- TMHMM
- TMpred
- Motif Scan

UniProt

Subcellular location^a

• Cell membrane 🕕 ; Multi-pass membrane protein 🕦

Topology

Feature key	Position(s)	Description	Actions	Graphical view	Length
Topological domain ⁱ	1 - 27	Cytoplasmic	🏦 Add 🔧 BLAST		27
Transmembrane ⁱ	28 - 50	Helical	🏦 Add 🔧 BLAST		23
Topological domain ⁱ	51 - 61	Extracellular	📾 Add 🔧 BLAST		11
Intramembrane ⁱ	62 - 72	Helical; Pore-forming	🏦 Add 🔧 BLAST		11
Intramembrane ⁱ	73 - 80	Pore-forming			8
Topological domain ⁱ	81 - 87	Extracellular			7
Transmembrane ⁱ	88 - 111	Helical	🏦 Add 🔧 BLAST		24
Topological domain ⁱ	112 - 160	Cytoplasmic	🏦 Add 🔧 BLAST		49

GO - Cellular componentⁱ

voltage-gated potassium channel complex Source: InterPro

View the complete GO annotation on QuickGO \ldots

Keywords - Cellular componentⁱ Cell membrane, Membrane

InterPro

🚓 EMBL-EBI 🔌 Services 👷 R	esearch 🔥 Training 🅕 About us	EMBL-EBI 🍈 Hinxton
Protein sequence	kesa Examples PRO ce analysis & classification	Q (1945, Innase, P51587, PF62532, GO 0007165
Home Search Release notes	Download About InterPro Help Contact InterPro BETA	
Overview Similar proteins (21237) Structures	pH-gated potassium channel Kcs (P0A334) Accession #P0A334 (KCSA_STRLI)	Export TSV
Filter view on Entry type	Species Streptomyces Invidans Length 160 amino acids (complete)	Source: UniProtKB
	Protein family membership I valage-galed potasium channel (PR028355) Homologous superfamilies Ano predicted Domains and repeats Detailed signature matches I PR01909 Polasium channel doman I pr01909 Polasium channel doman I pr01909 Polasium channel doman	• Domain 120 140 160 • PTMR 11577 • PR00109 (nchwells) • PT07895 (nut_swa_0) • C3304.10.28 • C3304.102.8 • C3304.102.8 • C3304.102.8.10 • C3304.102.8.10
	Other features Other features GO term prediction Biological Process @cococcest potassum ton transport Molecular Function @cococcest potassum channel activity Cellular Component @cococcest potassum channel comptex	(YTOPLASMC_D. (YTOPLASMC_D. (YTOPLASMC_D. (YTOPLASMC_D. (GAUL_PEPTOD. GGUL_PEPTOD. GGUL_PEPTOD. GGUL_PEPTOD. TGUL_PEPTOD. TGUL_PEPTOD.

Pfam

Protein: KCSA_STRLI (P0A334)

Summary	Summary
Sequence Structures	This is the summary of UniProt entry <u>KCSA_STRLI</u> 岱 (<u>P0A334</u> 岱).
Tuest	Description: pH-gated potassium channel KcsA
TreeFam	Source organism: <u>Streptomyces lividans</u> 삼 (NCBI taxonomy ID 삼)
Jump to	Length: 160 amino acids
30 mp to	Reference Proteome: X
enter ID/acc Go	Please note: when we start each new Pfam data release, we take a copy of the UniProt sequence database. This snapshot of UniProt forms the basis of the overview that you see here. It is important to note that, although some UniProt entries may be removed <i>after</i> a Pfam release, these entries will not be removed from Pfam until the <i>next</i> Pfam data release.

Pfam domains

This image shows the arrangement of the Pfam domains that we found on this sequence. Clicking on a domain will take you to the page describing that Pfam entry. The table below gives the domain boundaries for each of the domains. Less...

E-values are based on searching the Pfam-A family against UniProtKB 2018 04 & using hmmsearch.

Download the data used to generate the domain graphic in JSON format.

Sourco	Domain	Start	End	Gathering thre	shold (bits)	Score ((bits)	E-va	lue
Source	Domain	Start	End	Sequence	Domain	Sequence	Domain	Sequence	Domain
Pfam	Ion trans 2	33	116	22.50	22.50	53.90	53.40	8.6e-11	1.2e-10

Show or hide domain scores.

HMM(hidden Markov model) logo

The HMM logo is a graphical representation of the Hidden Markov Model that decribes the properties of that HMM. The differing heights and colors of the letters represent different properties of the positions in the HMM they represent.

The SMART diagram above represents a summary of the results shown below. Domains with scores less significant than established cutoffs are not shown in the diagram. Features are also not shown when two or more occupy the same piece of sequence; the priority for display is given by SMART > PFAM > PROSPERO repeats > Signal peptide > Transmembrane > Coiled coil > Unstructured regions > Low complexity. In either case, features not shown in the above diagram are marked as 'overlap' in the right side table below.

-	-			
Name	Start 🔺	End	E-value	
low complexity	5	17	N/A	1
transmembrane region	28	50	N/A	
transmembrane region	66	88	N/A	
transmembrane region	93	115	N/A	
low complexity	132	143	N/A	4

Confidently predicted domains, repeats, motifs and features:

Features NOT shown in the diagram: (2)

Name	Start 🔺	End	E-value	Reason	
low complexity	28	42	N/A	overlap	$\hat{}$

Click on a row to highlight the feature in the diagram above. Click the feature name for more information.

TMHMM Server v. 2.0

TMHMM result

HELP with output formats

	MERCEOHENCE	Longth, 160			
*	WEDDEQUENCE	Lengen: 160			
#	WEBSEQUENCE	Number of pred	dicted TMHs:	3	
ŧ	WEBSEQUENCE	Exp number of	AAs in TMHs:	58.3481	9
ŧ	WEBSEQUENCE	Exp number, fi	irst 60 AAs:	22.7134	5
ŧ	WEBSEQUENCE	Total prob of	N-in:	0.14030	
ŧ	WEBSEQUENCE	POSSIBLE N-ter	cm signal sequ	lence	
W	EBSEQUENCE	TMHMM2.0	outside	1	27
W	EBSEQUENCE	TMHMM2.0	TMhelix	28	50
W	EBSEQUENCE	TMHMM2.0	inside	51	65
W	EBSEQUENCE	TMHMM2.0	TMhelix	66	88
W	EBSEQUENCE	TMHMM2.0	outside	89	92
W	EBSEQUENCE	TMHMM2.0	TMhelix	93	115
WI	EBSEQUENCE	TMHMM2.0	inside	116	160

plot in postscript, script for making the plot in gnuplot, data for plot

TMpred

Possible transmembrane helices The sequence positions in brackets denominate the core region. Only scores above 500 are considered significant. Inside to outside helices : 2 found from to score center 28 (30) 50 (47) 2351 39 90 (90) 115 (111) 2204 103 Outside to inside helices : 3 found from to score center 1 (1) 18 (18) 234 9 28 (31) 50 (47) 2507 39 90 (90) 116 (110) 2288 100

----> STRONGLY prefered model: N-terminus outside
2 strong transmembrane helices, total score : 4711
from to length score orientation
1 28 50 (23) 2507 o-i
2 90 115 (26) 2204 i-o

Motif Scan

SIB		Moth	Scan Re		search help
user: GUEST width: 600 log in settings	Query Protein Database of motifs	temporarily stored <u>her</u> HAMAP profiles [hama [freq_pat], PROSITE p	<u>e</u> . p], PROSITE patt rofiles [prf].	erns [pat], More profiles [pre], PROSITE patterns	(frequent match produce
Hub Results Stored results Private area Misc			sear searching PROSITE se searc	ching HAMAY profiles ching the second second second second second promote (free profiles hing PROSITE profiles postprocessing Summary Summary	
Deprecated Privacy notice	Original output Matches map (features from query are above the ruler, matches of the motif scan are below the	<u>hamap, pat, freq pat</u> ,	, <u>pre, prf</u> .	40 00 120 rescription (************************************	16
	ruler) List of matches	Legends: FT MYHIT FT MYHIT FT MYHIT FT MYHIT FT MYHIT FT MYHIT FT MYHIT	1, freq_pat:MYRISTY 43 48 53 58 104 109 129 131 140 142 131 137 1 114 57 114	<pre>(1); 2, freq_pat:FRC_FNOSFNO_SITE (1); 3, freq_pat:TYR_FF freq_pat:MYRISIYL (?) freq_pat:MYRISIYL (?) freq_pat:MYRISIYL (?) freq_pat:FRC_FNOSFNO_SITE [?] freq_pat:FRC_FNOSFNO_SITE [?] freq_pat:TYR_FNOSFNO_SITE [?] pre:CATION CENNEL_FNOSFNO_SITE [?] pre:CATION CENNEL_FNOSFNO_SITE [?]</pre>	KOSPHO_SITE (?).
	Grap	hics pre:	CHANNE	L_PORE_K	
Query					
Query ID CHANN DE Pore CC The s	EL_PORE_K; MATRIX. region of potassium c coring system depicte	hannels. d below is appro;	ximate.		
Query ID CHANN DE Pore CC The s	EL_PORE_K; MATRIX. region of potassium c coring system depicte	hannels. d below is approx	ximate.		
Query ID CHANN DE Pore CC The s	EL_PORE_K; MATRIX. region of potassium c coring system depicte	hannels. d below is approx	ximate.		

Match 1

>pre:CHANNEL_PORE_K 17.550 729 pos. 57 - 114 [1, -1] PS50265|pre:CHANNEL_PORE_K Pore region of potassium channels.

AQLITYPRALWWSVETATTVGYGDLYPVTLWGRLVAVVVMVAGITSFGLVTAALATWF

Motif analysis conclusion

- Motif prediction gave us similar result: kcsA has 3 transmembrane region, with 1 ion passing pore.
- Motif prediction also gave us cues for predicting its tertiary structure in vivo.

- Protein Data Bank (PDB)
- Literature

The structure of the potassium channel: molecular basis of K+ conduction and selectivity.

Protein Data Bank

PDB-Protein Feature View

Macromolecules				
Find similar proteins by: Sequence Struct	ure			
Entity ID: 1				
Molecule	Chains	Sequence Length	Organism	Details
PROTEIN (POTASSIUM CHANNEL PROTEIN)	A, B, C, D	97	Streptomyces lividans	Mutation(s): 1 Gene Names: kcsA (skc1)
Membrane protein mpstruct	INS: ALPHA-HELICAL	Sub Group: Channels: Potassium, Sodium, & Proton Ion- Selective	Protein: KcsA Potassium channel, H ⁺ gated	
Find proteins for POA334 (Streptomyces live	idans)			Go to UniProtKB: P0A334
P0A334 P0A334 - KC SA_STRLI - pH Molec. Processing Cytoplasmic	egated potassium channel KcsA el KcsA Helical	racellula]Helical; Pore Extr a	a Helical Cyto	Full Protein Feature View for P0A334
SCOP domains	Voltage-gated potassium channels			

PDB-sequence view

Swissmodel-homo-4-mer

Swissmodel-heteromer

PDB-Ligand View

1BL8

POTASSIUM CHANNEL (KCSA) FROM STREPTOMYCES LIVIDANS

Note: Use your mouse to drag, rotate, and zoom in and out of the structure. Mouse-over to identify atoms and bonds. Mouse controls documentation.

V76

T75

[K]402

[75 - [K]403

Literature

The structure of the potassium channel: molecular basis of K+ conduction and selectivity.

Doyle DA¹, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R.

Author information

Abstract

The potassium channel from Streptomyces lividans is an integral membrane protein with sequence similarity to all known K+ channels, particularly in the pore region. X-ray analysis with data to 3.2 angstroms reveals that four identical subunits create an inverted teepee, or cone, cradling the selectivity filter of the pore in its outer end. The narrow selectivity filter is only 12 angstroms long, whereas the remainder of the pore is wider and lined with hydrophobic amino acids. A large water-filled cavity and helix dipoles are positioned so as to overcome electrostatic destabilization of an ion in the pore at the center of the bilayer. Main chain carbonyl oxygen atoms from the K+ channel signature sequence line the selectivity filter, which is held open by structural constraints to coordinate K+ ions but not smaller Na+ ions. The selectivity filter contains two K+ ions about 7.5 angstroms apart. This configuration promotes ion conduction by exploiting electrostatic repulsive forces to overcome attractive forces between K+ ions and the selectivity filter. The architecture of the pore establishes the physical principles underlying selective K+ conduction.

Comment in

The vision of the pore. [Science. 1998] Science. 1998 Aug 14;281(5379):883. A vision of the pore. [Science. 1998]

PMID: 9525859

[Indexed for MEDLINE] Free full text

Figure 1 Sequence alignment of selected K⁺channels and cyclic nucleotide-gated channels.

Figure 2 Experimental electron density map.

Figure 3 Views of the tetramer.

Declan A. Doyle et al. Science 1998;280:69-77

Figure 6 Identification of permeant ion positions in the pore.

Figure 7 Two mechanisms by which the K⁺ channel stabilizes a cation in the middle of the membrane.

Figure 8 Detailed views of the K⁺ channel selectivity filter.

Declan A. Doyle et al. Science 1998;280:69-77

Functional analysis

功能分析

We propose that the following principles underlie the structure and operation of K⁺ channels. (i) The pore is constructed of an inverted teepee, with the selectivity filter held at its wide end. This architecture also describes the pore of cyclic nucleotide-gated channels and probably Na⁺ and Ca²⁺ channels as well. (ii) The narrow selectivity filter is only 12 Å long, whereas the remainder of the pore is wider and has a relatively inert hydrophobic lining. These structural and chemical properties favor a high K⁺ throughput by minimizing the distance over which K⁺ interacts strongly with the channel. (iii) A large water-filled cavity and helix dipoles help to overcome the high electrostatic energy barrier facing a cation in the low dielectric membrane center. (iv) The K⁺ selectivity filter is lined by carbonyl oxygen atoms, which provide multiple closely spaced sites. The filter is constrained in an optimal geometry so that a dehydrated K⁺ ion fits with proper coordination but the Na⁺ ion is too small. (v) Two K⁺ ions at close proximity in the selectivity filter repel each other. The repulsion overcomes the otherwise strong interaction between ion and protein and allows rapid conduction in the setting of high selectivity.

Acknowledgement

感谢罗老师一学期的辛勤指导~ 感谢认真负责的助教师姐~ 感谢在座各位的聆听~