Exploring the transcriptional regulation of Arabidopsis pollen germination

2018/01/14 报告人:张立光、黄勋

组员

G10: 傅偲、黄勋、张二禾、俞琴琴 G15: 杜丽萍、郑馨慧、贾名康、张东亮 G19: 张立光、周梦璇、王妍妍

Outline

1. Promoter analysis of JINGUBANG

1.1 How to find the promoter of a gene .1.2 Prediction of Transcription factors.

2. Introduction to MADS family

2.1 MADS gene evolution in land plants.

3. MADS Transcription factors

3.1 Overview of MADS family in *Arabidopsis thaliana*.3.2 MIKC*-type genes in *A. thaliana*

JGB, a Negative Regulator of Pollen Germination

jgb mutant pollen germinated faster than wild type in moist environment.

(Ju et al., 2016)

Outline

1. Promoter analysis of JINGUBANG 1.1 How to find the promoter of a gene . 1.2 Prediction of Transcription factors.

- **2. Introduction to MADS family** 2.1 MADS gene evolution in land plants.
- 3. MADS Transcription factors
 3.1 Overview of MADS family in *Arabidopsis thaliana*.
 3.2 MIKC*-type genes in *A. thaliana*.

The Gene Structure of Bacteria

https://en.wikipedia.org/wiki/Gene_structure

The Gene Structure of JGB

How to Find Promoter

Outline

1. Promoter analysis of *JINGUBANG*1.1 How to find the promoter of a gene . 1.2 Prediction of Transcription factors.

2. Introduction to MADS family 2.1 MADS gene evolution in land plants.

3. MADS Transcription factors 3.1 Overview of MADS family in *Arabidopsis thaliana*. 3.2 MIKC*-type genes in *A. thaliana*.

Putative promoter and putative TFs

How to screen the possible TFs?

Conserved Gene may have Conserved Promoter

Protein names		1k	2 ⁱ k	Зk	41	Identity
At2g26490 (Arabidopsis thaliana)						100.0%
Uncharacterized protein (Arabidopsis thaliana)						99.8%
Uncharacterized protein (Eutrema salsugineum)						97.4%
Uncharacterized protein (Capsella rubella)		1				97.2%
BnaC08g32900D protein (Brassica napus)						94.6%
Uncharacterized protein (Arabis alpina)						94.8%
BnaA09g40460D protein (Brassica napus)		l .				94.2%
Uncharacterized protein (Brassica rapa subsp. pekinen)						94.4%
BnaA04g15460D protein (Brassica napus)						91.1%
Uncharacterized protein (Brassica rapa subsp. pekinen)						91.1%
BnaC04g38480D protein (Brassica napus)						91.1%
F-box and wd40 domain protein, putative (Ricinus	-	•				76.6%
communis)						
Uncharacterized protein (Jatropha curcas)	-					74.3%

Orthologous Or Paralogous of *JGB*

JGB Orthologous Promoters Reserved Evolution Feature as their Genes

Conserved motifs can be found in *JGB* orthologous Promoter

Conserved motifs have high score

The Conserved Region Contained Core CAREs

GFP

Possible *cis*-acting regulation elements in *JGB* Promoter

CArG-Box—The Binding site of MADS TFs

AtSEP3 binding sites sequence Logo

Outline

1. Promoter analysis of JINGUBANG 1.1 How to find the promoter of a gene . 1.2 Prediction of Transcription factors.

2. Introduction to MADS family 2.1 MADS gene evolution in land plants.

3. MADS Transcription factors3.1 Overview of MADS family in *Arabidopsis thaliana*. 3.2 MIKC*-type genes in *A. thaliana*.

Phylogenetic tree of MADS Gene family

Zhao et al., Plant cell. 2017

Phylogenetic tree with Syntenic connects

Outline

1. Promoter analysis of JINGUBANG 1.1 How to find the promoter of a gene . 1.2 Prediction of Transcription factors.

2. Introduction to MADS family 2.1 MADS gene evolution in land plants.

3. MADS Transcription factors

3.1 Overview of MADS family in *Arabidopsis thaliana*.3.2 MIKC*-type genes in *A. thaliana*.

Phylogeny tree with Syntenic connects

Outline

1. Promoter analysis of JINGUBANG 1.1 How to find the promoter of a gene . 1.2 Prediction of Transcription factors.

2. Introduction to MADS family 2.1 MADS gene evolution in land plants.

3. MADS Transcription factors

3.1 Overview of MADS family in Arabidopsis thaliana.3.2 MIKC*-type genes in *A. thaliana*.

Phylogenetic tree of MIKC*-type MADS

DNA Binding domain of MIKC*-type MADS

Interactions between MIKC*-S&P Clade

Verelst et al., Plant Physiol. 2007

Interaction between AtAGL30 and AtAGL66

	Model-Template Alignment	*
Model_02 4y66.1.A	MGRVKLKIKKLENTNGRQSTFAKRKNGILKKANELSILCDIDIVLLMFSPTGKAAICCGTRSSMEEVIAKFSQVTPQERTKRKFESLENL	90
Model_02	KKTFQKLDHDVNIREFIASSNSTV <mark>EDLSTQARILQARISEIHGRLSYWTEPDKINNVEHLGQLEISIRQSLDQL</mark> RAHKEHFGQQQQAMQI	180
4y66.1.A	NDPDVAQKLRNYTDIAKQEASSLLKEKLALQVKLEEQRGTFRDLLKNDPDVAQKLRNYTDIAKQEA	164
Model_02 4y66.1.A	ENANFVKDWSTCSMQDGIQIPLEQQLQSMSWILNSNTTNIVTEEHNSIPQREVECSASSSFGSYPGYFGTGKSPEMTIPGQETSFLDELN	270
Model_02 4y66.1.A	TGQLKQDTSSQQQFTNNNNITAYNPNLHNDMNHHQTLPPPPLPLTLPHAQVYIPMNQREYHMNGFFEAPPPDSSAYNDNTNQTRFGSSSS	360
Model_02 4y66.1.A	SLPCSISMFDEYLFSQVTKTKLSQRF 	386
Model_02 4y66.1.B	MGRVKLEIKRIENTTNRQVTFSKRRNGLIKKAYELSILCDIDIALLMFSPSDRLSLFSGKTRIEDVFSRYINLSDQERENALVFPDQSRR	90
Model_02	PDFQSKEYLLRTLQQLKAENDIALQLTNPTAINSD <mark>VEELEHEVYKLQQQLLMAEEELRKYEPDPIRFTTMEEYETCEKQLMDTLT</mark> RVNQR	180
4y66.1.B	AAPITEVLKQEVDELRQQVS	133
Model_02 4y66.1.B	REHILSQDQLSSYEASALQQQQSMGGPFGNDVVGGWLTENGPNEAHLFDASAHSAMYETLLQGSSSSSNQNNIMGESNVSNHNGDMFQEW	270
Model_02 4y66.1.B	AQAYNSTTAHNPSTLFPPMQHQHGLVVDPNIEEIEIPVMKKDAQADHEVSDYDIRMPQLSSQ	332

Interaction between AtAGL30 and AtAGL104

¢	$Mode1_{02}$ MGRVKLEIKRIENTINRQVTFSKRRNGLIKKAYELSILCDIDIALIMFSPSDRLSLFSGKTRIEDVFSRFINLPKQERESALYFPDQNRRPDIQNKECLLRILQQ	105
	4y66.1.B	
	Model_02 LKTENDIALQVTNPAAINSD <mark>VEELEHEVCRLQQQLQMAEEELRRYEPDPIRFTMEEYEVSEKQLLDTLTHVVQRRDHL</mark> MSNHLSSYEASTMQPNIGGPFVNDVV	210
	4y66.1.BTEVLKQEVDELRQQVSANDEKLRLVRE-SNAIVSDADMLTLQKNYKDAMTAWATRRAKC	175
	$Model_{02}$ egwlpengtnqthlfdasahsnqlrelssamyepllqgsssssnqnnmsechvtnhngemfpewaqaysssalfasmqqqhegvgpsieemmpaqqsdipgvtae	315
	4y66.1.B	
	Model_02 TQVDHEVSDYETKVPQLSSQ	335
	4y66.1.B	
¢	Model 02 MGRVKLKIKKLENTNGRQSTFAKRKNGILKKANELSILCDIDIVLLMFSPTGKAAICCGTRSSMEEVIAKFSQVTPQERTKRKFESLENLKKTFQKLDHDVNIRE	105
	4y66.1.A	
	Model 02 FIASSNSTVEDLSTOARILOARISEIHGRLSYWTEPDKINNVEHLGOLEISIROSLDOLRAHKEHFGQQQQAMQIENANFVKDWSTCSMQDGIQIPLEQQLQSMS	210
	4y66.1.ASSLLKEKLALQVKLEEQRGTFRDLLKNDPDVAQKLRNYTDIAKQEASSLLKEKLALQVKLEEQRGTFRDLLKNDPDVAQKLRNYTDIAKQEA	164
	Model 02 WILNSNTTNIVTEEHNSIPOREVECSASSSFGSYPGYFGTGKSPEMTIPGOETSFLDELNTGOLKODTSSOOOFTNNNNITAYNPNLHNDMNHHOTLPPPPLPLT	315
	4y66.1.A	
	Model 02 LPHAOVYIPMNOREYHMNGFFEAPPPDSSAYNDNTNOTRFGSSSSSLPCSISMFDEYLFSOVTKTKLSORF	386
	4y66.1.A	

Interaction domain between MIKC*-S&P Clade

WebLogo 3.6.0

DNA Binding Domain S/P Interaction Domain

MIKC*-type MADS

The Analysis about Domain and Structure of MIKC* Family

G10 Group

傅偲 黄勋 俞琴琴 张二禾

Domain Analysis of MIKC* family

Kinds of domains

Sequence search results Show the detailed description of this results page. We found 1 Pfam-A match to your search sequence (all significant) Show the search options and sequence that you submitted. Return to the search form to look for Pfam domains on a new sequence.

Significant Pfam-A Matches

Show or hide all alignments.

Family	Description	Entry	Clan	Enve	lope	Align	ment	HM	M	нмм	Bit	E-value	Predicted active sites	Show/hide alignment
ranny	Description	type	Cian	Start	End	Start	End	From	То	length	score	E-value		
SRF-TF	SRF-type transcription factor (DNA-binding and dimerisation domain) (shorten)	Domain	n/a	10	57	10	55	1	46	48	83.7	4.2e-24	n/a	Hide
#HMM #MATCH #PP #SEQ	rIenerargvtFsKRrnGLfKKAsELsvLcgaevavvvfspngkly YCH rIen ++RqvtFsKRrnGL+KKA+ELs+Lc++++a+++fsp+++1 7************************************													

SRF-type transcription factor (**DNA-binding and dimerisation domain**)

Predicted feature:							
DOMAIN	1	61	MADS-box				
DOMAIN	1	<mark>5</mark> 3	MADS-box				

DISCOVERED MOTIFS

MOTIF LOCATIONS

Clustal Omega

"The last alignment program you'll ever need"

Multi-alignment result:

AtAGL67	RIEKSTNRQITFSKRKKGLIKKAYELSTLCDIDLALLMFSPSDRLC
AtAGL66	RIENTTNRQVTFSKRRNGLIKKAYELSILCDIDIALLMFSPSDRLS
AtAGL104	RIENTTNRQVTFSKRRNGLIKKAYELSILCDIDIALIMFSPSDRLS
AtAGL94	QNMNGRQCTYTKRRHGIMKKAKELSILCDIDVVLLMFSPMGK
AtAGL65	-LESTSNRQVTYTKRKNGILKKAKELSILCDIDIVLLMFSPTGRATAF
AtAGL30	-LENTNGRQSTFAKRKNGILKKANELSILCDIDIVLLMFSPTGK
	:** *::**::*::*** *** ****:.*:**** .:

Identity result :

Perce	nt Identity	Matrix	- creat	ed by Cl	ustal2.1	28	
1:	AtAGL67	100.00	82.61	80.43	54.76	60.00	60.47
2:	AtAGL66	82.61	100.00	97.83	61.90	68.89	69.77
3:	AtAGL104	80.43	97.83	100.00	59.52	66.67	67.44
4:	AtAGL94	54.76	61.90	59.52	100.00	71.43	73.81
5:	AtAGL65	60.00	68.89	66.67	71.43	100.00	81.40
6:	AtAGL30	60.47	69.77	67.44	73.81	81.40	100.00

Clustal Omega

AtAGL67 0.12884 AtAGL66 -0.00051 AtAGL104 0.02225 AtAGL94 0.16927 AtAGL65 0.10059 AtAGL30 0.08546

Structure prediction of MIKC* family

Phyre ²	Subscribe to Phyre at Google Groups Email: Subscribe Visit Phyre at Google Groups Follow @Phyre2server
Protein Homology/analogY Recognition Engine V 2.0	
Expert	t Mode
→ weighter cashweit. One-to-one threading	Submit both a sequence and a structure. Phyre will attempt to align the sequence and structure and construct a model of your sequence
Batch processing	Submit a file containing up to 100 sequences for automated modelling by Phyre (to increase limit contact <u>Lawrence Kelley</u>)
BackPhyre	Use Phyre in reverse. Submit a PDB structure and search that structure against a wide range of genomes
andvincashma	Search your sequence against a wide range of genomes

#	Description	JobId	Status	Hit Summary
1	sp Q1PFA4 AGL30_ARATH_Agamous- like_MADS-box_protein_AGL30_OS	78d395697c55811f	Finished	
2	sp Q7X9I0 AGL65_ARATH_Agamous- like_MADS-box_protein_AGL65_OS	ae2f6e9bc911608e	Finished	
3	tr F4I8L6 F4I8L6_ARATH_AGAMOUS- like_67_OS=Arabidopsis_thalia	cbb2937d7fbbedb6	Finished	
4	tr Q766C0 Q766C0_ARATH_AGAMOUS- like_94_OS=Arabidopsis_thalia	7c79ed5c9d89cc49	Finished	
5	sp Q9LM46 AG104_ARATH_Agamous- like_MADS-box_protein_AGL104_0	dc6cc78947d7dc35	Finished	

	Model (left) based on template <u>d1n6ja</u>							
			Top template information					
	Fold:SRF-like Superfamily:SRF Family:SRF-like	-like						
			Confidence and coverage					
	Confidence:	100.0%	Coverage: 36%					
Best	90 residues (36% 100.0% confidence	o of your sequence) h te by the single highes	ave been modelled with st scoring template.					
	Additional confider analysis) which co	ont templates have be over other regions of y	<i>en detected</i> (see <u>Domain</u> your sequence.					
AGL67	173 residues (69%) could be modelled at >90% confidence using multiple-templates.							
	You may wish to try resubmitting your sequence in "intensive" mode to model more of your sequence.							
			3D viewing					
	Interactive 3D view	<u>w in JSmol</u>						
	For other options FAQ	to view your downloa	ded structure offline see the					

	Model (left) base	ed on template d1n6ja	
			Top template information
	Fold:SRF-like Superfamily:SI Family:SRF-like	RF-like	
			Confidence and coverage
	Confidence:	100.0%	Coverage: 23%
Worst AGL65	90 residues (23 100.0% confider You may wish to automatically so templates as the Warning: 56% o regions cannot b	% of your sequence) he nce by the single highes provide the sequence of submit your sequence an your sequence every any appear in the Phyre2 of your sequence is prec- be meaningfully predicted	ave been modelled with st scoring template. to <u>Phyrealarm</u> . This will v week for new potential library. dicted disordered. Disordered ed.
			3D viewing
	Interactive 3D v For other option FAQ	<u>iew in JSmol</u> Is to view your downloa	ded structure offline see the

The rank1 hits of 6 members are all 1n6j

Domain MADS SRF-like (IPR033897)

Short name: MADS_SRF-like

In SRF, the MADS box has been shown to be involved in DNA-binding and dimerization .Proteins belonging to the MADS family function as dimers, the primary DNA-binding element of which is an anti-parallel coiled coil of two amphipathic alphahelices, one from each subunit. The DNA wraps around the coiled coil allowing the basic N-termini of the helices to fit into the DNA major groove. The chain extending from the helix N-termini reaches over the DNA backbone and penetrates into the minor groove. A 4-stranded, anti-parallel beta-sheet packs against the coiled-coil face opposite the DNA and is the central element of the dimerization interface.

1n6j-chainA&B AGL66 VS 1n6j-chainB AGL66 VS 1n6j-chainA

1C7U

Complex of the DNA binding core domain of the transcription factor MEF2A with a 20mer oligonucleotide

- Modelled Residues
- ProQ2 quality assessment

AGL66

- GRVKLE I K R IENT

- <mark>GRVK</mark>LE I K <mark>R IENT</mark>

AGL67

- GRVKLE L K R IEKS

- GRVKLK I K K LEN

AGL30

149 residues (45%) could be modelled at >90% confidence using multiple-templates.

173 residues (69%) could be modelled at >90% confidence using multiple-templates.

AGL66-Intensive

AGL67-Intensive

Reference

- 1) **Verelst, W.**, *et al.* (2007). MIKC* MADS-Protein complexes bind motifs enriched in the proximal region of late Pollen specific Arabidopsis promoters. Plant Physiol.
- 2) Ju, Y. et al. (2016). Arabidopsis JINGUBANG is a negative regulator of pollen germination that prevents pollination in moist environments. Plant cell.
- 3) **Zhao, T.** *et al.* (2017). Phylogenomic Synteny Network Analysis of MADS-Box Transcription Factor Genes Reveals Lineage-Specific Transpositions, Ancient Tandem Duplications, and Deep Positional Conservation. Plant cell.

Thank you !