DNA－cleavage prokaryotic Argonaute prediction based on sequence analysis

基于序列分析预测DNA切割活性的原核Argonaute蛋白

PKU16F G09
张心怡 岳頔 何苑
20170114

Outline

－Background
－Sequence analysis of TtAgo and PfAgo
－Phylogenetic analysis of Argonaute Proteins
－Structure prediction of DNA－cleavage Argonaute protein

－Background

$>$ Functions of Argonaute proteins
Ago protein is the key player in eukaryotic RNA interference（RNAi）pathways

Argonaute protein is a member of RNA－ induced silencing complex（RISC）

Small RNAs guide Argonaute proteins to their specific targets through sequence complementarity，which then leads to mRNA cleavage or translation inhibition．
$>$ Functions of Argonaute proteins

Prokaryotic Argonaute proteins participate in host defense by DNA interference

DNA－guided DNA interference by a prokaryotic TtAgo Argonaute

Daan C．Swarts ${ }^{1 *}$ ，Matthijs M．Jore ${ }^{1 *}$ ，Edze R．Westra ${ }^{1}$ ，Yifan Zhu ${ }^{1}$ ，Jorijn H．Janssen ${ }^{1}$ ，Ambrosius P．Snijders ${ }^{2}$ ，Yanli Wang ${ }^{3}$ ，
Nature 2014.3 Dinshaw J．Patel ${ }^{4}$ ，José Berenguer ${ }^{5}$ ，Stan J．J．Brouns ${ }^{1}$ \＆John van der Oost ${ }^{1}$

Argonaute of the archaeon Pyrococcus furiosus is a DNA－guided nuclease that targets cognate DNA
 PfAgo

Daan C．Swarts ${ }^{1}$ ，Jorrit W．Hegge ${ }^{1}$ ，Ismael Hinojo ${ }^{1}$ ，Masami Shiimori²，Michael A．Ellis ${ }^{2}$ ， Justin Dumrongkulraksa ${ }^{2}$ ，Rebecca M．Terns ${ }^{2}$ ，Michael P．Terns ${ }^{2}$ and John van der Oost ${ }^{1{ }^{1 *}}$

NAR 2015.4

[^0]$>$ Several genome editing technologies

২ ZFN and TALEN：Protein－DNA binding
\diamond CRISPR／Cas9：RNA－DNA binding
\diamond New gene editing tool？
\diamond DNA－DNA binding？

$>$ Comparison of TtAgo and PfAgo

TtAgo
 PfAgo

Organism

Requirement

Thermus thermophilus

$$
\mathrm{Mn}^{2+} \text { or } \mathrm{Mg}^{2+} ; 75^{\circ} \mathrm{C}
$$

Pyrococcus furious

Mn^{2+} or $\mathrm{Co}^{2+} ; 50-250 \mathrm{mM}$ $\mathrm{NaCl} ; 87-99.9^{\circ} \mathrm{C}$

DEDD

5'-phosphated ssDNA (13-25 nt) 5'end:C ($1^{\text {st }}$ position) A (2 ${ }^{\text {nd }}$ position)

DEDH

5'-phosphated ssDNA 15-31 nt

Target
ssDNA; dsDNA
ssDNA; dsDNA
$>$ Crystal structure of TtAgo ternary complex

5＇－phosphorylated and 3＇－hydroxyl ends of guide strands are anchored within MID and PAZ domain

The cleavage activity of Ago resides in the RNase H fold adopted by the PIWI domain

－Sequence analysis of TtAgo and PfAgo

＞PSI－BLAST of TtAgo and PfAgo

Sequence	TtAgo／PfAgo
Database	Refseq protein
Expect threshold	0.00001
Word size	3
Matrix	BLOSUM45
Gap Costs	Existence 11，Extension 3
PSI－BLAST threshold	0.0001

＞PSI－BLAST of TtAgo and PfAgo

TOP 30 hits of TtAgo

Total＝30

\square Thermosynechococcus
Synechocystis
StanieriaSynechococcusLyngbyaCyanotheceAnoxybacillus
Trachymyrmex

Thermus 栖热菌属

TOP 30 hits of PfAgo

Total $=30$

Anoxybacillus 厌氧芽胞杆菌属

－Phylogenetic analysis of Argonaute Proteins

＞Alignment of TtAgo and PfAgo

Alignment of TOP 30 hits of TtAgo by MEGA7 ClustalW
北京大学
PEKING UNIVERSITY

Alignment of TtAgo and PfAgo

Species／Abbry	Group Name																										＊							
1．WP＿011011654．1 hypothetical protein Pyrococcus furiosus			K E F							I L	LLR																1 KN	NH	PVR					
2．WP＿055429304．1 hypothetical protein Thermococcus thioreducens			GKF	F			E G			।	－	RD	O		D	DEE		L	A								IVKR	RHL	LLR					
3．WP＿055441081．1 stem cell self－renewal protein Piwi domain－containing protein			1 F S										G			ED											11 KR	RSR	RRR					
4．WP＿026011736．1 hypothetical protein Anowybacillus kamchatkensis		S 1	1 FS	Y E	KI	1 YO	GM		A A	1 T	FH	RD	G		CRE	EDL						F				V	। I KR	R PR	RRR					
5．WP＿032099642．1 hypothetical protein Anoxybacillus flavithermus			FS										O			ED L											। I KR	RSR	RRR					
6．WP＿035065747．1 hypothetical protein Anoxybacillus gonensis			IFS	Y E	KM	MYO	GM				FH	RD	O		CRE	EDL			TR			F				VE	। I KR	R PR	RRR		AVY			
7．WP＿012575214．1 hypothetical protein Anoxybacillus flavithermus			FS										O			ED L											। I KK	KPR	RRR					
8．WP＿035063661．1 MULTISPECIES：hypothetical protein Anoxybacillus			1 FS	Y E	KM	M Yo					FHR	RD	G			EDL										1 E	11 KR	R PR	RRR					
9．WP＿042896060．1 hypothetical protein Anoxybacillus sp．BCO1			FS	Y E	KM						H	RD	G			EDL		L	TR								। I KR	RPR	RRR					
10．WP＿012966655．1 hypothetical protein Ferroglobus placidus			KK1																								IRKN	NIV	$V \mathrm{H}^{\text {a }}$					
11．WP＿027308646．1 hypothetical protein Caloramator sp．ALD01				Y		KFK			KH	1 V	1 H	R D	G		E	ENI		－	1 N								VKKQ	QGA	A V K	KFA	IK			
12．WP＿073249391．1 hypothetical protein Caloramator proteoclasticus			SY																								$V K K Q$	QGA	A V K					
13．WP＿014195559．1 hypothetical protein Geobacillus thermoleovorans			I Y S	Y E	Q 1	1 YO	GA			1 T	FHR	RD	G		CR	EDL										VE	। I KK	KPR	RRR		1 Y			
14．WP＿020279644．1 MULTISPECIES：hypothetical protein Geobacillus			YS	Y E		1 YO						RD	G														। I KK	KPR	RRR					
15．WP＿015791216．1 hypothetical protein Methanocaldococcus fervens			K	TD	1 N	NME					FLR	RD	G F														IRKN	NNK	KYK					
16．WP＿018663454．1 hypothetical protein Thermobrachium celere			SF	F E	TK	KF					1 H	$R \mathrm{D}$	G			ED 1		Y	边								$V K K Q$	QGA	A V K					
17．WP＿049625402．1 stem cell self－renewal protein Piwi domain－containing protei			I Y ${ }^{\text {Y }}$																								11 KK	KPR	RRR					
18．WP＿064221217．1 stem cell self－renewal protein Piwi domain－containing protei			YS									R D	G					－	Q								। I KK	KPR	RRR					
19．WP＿023817613．1 hypothetical protein Geobacillus genomosp． 3			YS																								। I KK	KPR	RRR					
20．WP＿010870838．1 hypothetical protein Methanocaldococcus jannaschii																											IRKN	NNK	KYK					
21．WP＿045143632．1 hypothetical protein Clostridium butyricum			15																								VKKN	NIP	PVK					
22．WP＿050002102．1 hypothetical protein Thermococcus eunthermalis			DQ		ET	TKS								I 1 P													। I KR	RPL	LVR					
23．WP＿062755455．1 stem cell self－renewal protein Piwi domain－containing protei			1 YS																								I I KK	KPR	RRR					
24．WP＿042383163．1 hypothetical protein Parageobacillus thermoglucosidans			1 YG			1 YO						RD	O			EDL										VE	। I KK	KPR	RRR		A Y			
25．WP＿074100515．1 hypothetical protein Paenibacillus sp．P3E			DQ																								। I KR	RTN	NRR					
26．WP＿058142162．1 hypothetical protein Clostridium butyricum			$1 S^{\text {S }}$		E E					IV	1 H	R D				ENI											VKKN	NIP	PVK					
27．WP＿055276084．1 hypothetical protein Clostridium disporicum			LS																								VRKN	NFA	ATR					
28．WP＿052698403．1 hypothetical protein Domibacillus enclensis			YSY													ESS											VIKK	KPN						
29．WP＿042211195．1 hypothetical protein Paenibacillus borealis			IDQ																							VE	। I KK	KTN	NRR					
30．WP＿048163021．1 hypothetical protein Thermogladius cellulolyticus			－																							1 N	KKR	RTP						

Alignment of TOP 30 hits of PfAgo by MEGA7 ClustalW

Phylogenetic tree of TtAgo and PfAgo

TtAgo：Neighbor joining，bootstrap 500 by MEGA7

＞Phylogenetic tree of TtAgo and PfAgo

PfAgo：Neighbor joining，bootstrap 500 by MEGA7

－Structure prediction of DNA－cleavage Argonaute protein

＞Common hits in both TtAgo and PfAgo
PSI－BLAST hits
Rank in TtAgo
Rank in PfAgo

Anoxybacillus suryakundensis 26

Anoxybacillus kamchatkensis
30
4

Anoxybacillus gonensis 27

Anoxybacillus sp．BCO1
24
9
> AsAgo structure prediction on SWISS-MODEL

＞AsAgo structure fitting with TtAgo and PfAgo

TtAgo in blue

PfAgo in yellow

Fit by Swiss－PDBViewer
＞AsAgo catalytic site prediction based on TtAgo and PfAgo

A	D	E	D	X
hAGO2	IFLGADVTHPP	QHRQEIIQDL	IIFYRDGVSEG	PAYYAHLVAFR
TAGO	LAVGFDAGGRE	－GERIPQEVV	VLLLRDGRV－－	PLHLADRLVKE
MjAgo	YIMGLDTGLGI	－GERLHLPYV	ILFLRDGFI－－	PIHYADKFVKA
PfAgo	YIIGIDVAPMK	GEQRGESVDM	ILLLRDGRI－－	PVHYAHKFANA

The DDX residues are positioned close together in the available pAgo structures，the glutamic acid（ E ）is located on a structural sub－domain termed the ＇glutamate finger＇．
＞AsAgo catalytic site prediction based on TtAgo and PfAgo

＞AsAgo catalytic site prediction based on TtAgo and PfAgo

Calculate by Swiss－PDBViewer
＞AsAgo catalytic site with TtAgo

TtAgo in blue
＞AsAgo catalytic site with PfAgo

PfAgo in yellow

Summary

－AsAgo is the top hit in bost TtAgo and PfAgo PSI－BLAST result
－AsAgo catalytic residues：D499 E534 D568 D683
－AsAgo may be a potential DNA－cleavage Argonaute protein

Acknowledgement

－Professor Luo
－Teaching assistant Ke Lan
－Liu Zhiheng
－All member in Group 9

Thanks！

[^0]: ${ }^{1}$ Laboratory of Microbiology，Department of Agrotechnology and Food Sciences，Wageningen University， 6703 HB Wageningen，The Netherlands and ${ }^{2}$ Department of Biochemistry and Molecular Biology，University of Georgia， Athens，Georgia 30602，USA

