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Abstract: In theoretical physics, there exist two basic mathematical approaches, algebraic and geometrical methods, 
which, in most cases, are complementary. In the area of genome sequence analysis, however, algebraic approaches have 
been widely used, while geometrical approaches have been less explored for a long time. The Z-curve theory is a geomet-
rical approach to genome analysis. The Z-curve is a three-dimensional curve that represents a given DNA sequence in the 
sense that each can be uniquely reconstructed given the other. The Z-curve, therefore, contains all the information that the 
corresponding DNA sequence carries. The analysis of a DNA sequence can then be performed through studying the corre-
sponding Z-curve. The Z-curve method has found applications in a wide range of areas in the past two decades, including 
the identifications of protein-coding genes, replication origins, horizontally-transferred genomic islands, promoters, trans-
lational start sides and isochores, as well as studies on phylogenetics, genome visualization and comparative genomics. 
Here, we review the progress of Z-curve studies from aspects of both theory and applications in genome analysis. 
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1. INTRODUCTION 

 In theoretical physics, there exist two basic mathematical 
approaches, algebraic and geometrical methods, which, in 
most cases, are complementary. In the area of genome stud-
ies, however, algebraic approaches, such as Markov chain 
models and hidden Markov chain models, have been widely 
used, while geometrical approaches have been less explored 
for a long time. The Z-curve theory is a geometric approach 
to genome analysis.  
 The Z-curve is a 3-dimensional curve that represents a 
given DNA sequence in the sense that each can be uniquely
reconstructed given the other [1-3]. The Z-curve, therefore, 
contains all the information that the corresponding DNA 
sequence carries. The analysis of a DNA sequence can then 
be performed through studying the corresponding Z-curve.  
 Historically, various methods for the graphical represen-
tation of DNA sequences were proposed, such as the H curve 
[4] and the 2-dimensional DNA walk [5]. It has been shown 
that most of these methods are, in fact, special cases of the Z-
curve, and an extensive comparison between the Z-curve and 
other representations was detailed in reference [2]. One of 
the advantages of the Z-curve is its intuitiveness, enabling 
global and local compositional features of genomes to be 
grasped quickly in a perceivable form. The methodology of 
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the Z-curve is a suitable platform on which other methods, 
such as statistics, can be integrated to address bioinformatics 
questions. The Z-curve method [1, 2] has found many appli-
cations in genome analysis since its initiation two decades 
ago. Here, we review the progress of the Z-curve studies 
from aspects of both theory and applications in genome re-
search. 

2. PART-1: THEORY OF THE Z-CURVE 

2.1. Symmetry of Four DNA Bases and its Geometric 
Representation 

 The DNA sequence is composed of 4 kinds of nucleotides, 
adenine, cytosine, guanine and thymine, denoted by A, C, G 
and T, respectively. The number of possible combinations 
when taking 2 bases at a time from 4 bases is 6. The 6 combi-
nations are: R (A/G) and Y (C/T); M (A/C) and K (G/T); W 
(A/T) and S (G/C), where R, Y, M, K, W and S represent the 
bases of puRine, pYrimidine, aMino, Keto, Weak hydrogen 
bonds and Strong hydrogen bonds, respectively, according to 
the NC-IUB recommendation [6]. The chemical structures of 
the four bases are shown in (Fig. 1), illustrating the symmetry 
among the four bases. According to different criteria, the four 
bases can be classified into two categories. 
(i) Criterion 1, according to the chemical structure of having 
single or double rings 
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(ii) Criterion 2, according to the chemical structure of having 
an amino or keto group 
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(iii) Criterion 3, according to the structure of the double helix 
forming two or three hydrogen bonds in the Watson-Crick pair  
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 We seek to find some geometrical representation for the 
above symmetry. If a 2-dimensional (plane) graph is 
adopted, we find that the symmetry can be represented by 
(Fig. 1A-C). If a 3-dimensional graph is adopted, the regular 
cube, as shown in (Fig. 2A), seems to be the unique choice 
to represent the symmetry. Each face of the cube is assigned 
to one, and only one, of the six characters: R, Y, M, K, W 
and S, thereby keeping the rule that R and Y, M and K, as 
well as W and S are on opposite sides. To prepare (Fig. 2A), 
readers may cut (Fig. 2B) and fold it along the dashed lines. 
Diagonals of the regular cube form a regular tetrahedron 
ACGT, as shown in (Fig. 2C). Assigning one of A, C, G and 
T to each vertex of the tetrahedron as shown in (Fig. 2C) is 
not arbitrary. Note that the vertex A of the tetrahedron is also 
the vertex of the cube, at which three faces of the cube, R, M 
and W, are crossed. The intersection base of R (A/G), M 
(A/C) and W(A/T) is A. Similar assignments can be applied 
to the vertices C, G and T, as shown in (Fig. 2C and D). 
 To further the study, a coordinate system needs to be es-
tablished (Fig. 2D). The line connecting the middle point of an 
edge and that of the opposite edge of the tetrahedron is called 
the middle line. There are a total of three middle lines in a 
tetrahedron, crossing at the center O, and they are perpendicu-
lar to each other. A Cartesian coordinate system OXYZ can be 
set up by using the three middle lines, as shown in (Fig. 2D). 

 Thus, the cube-tetrahedron geometric entity established 
here correctly reflects the symmetry of the four DNA 
bases. 

2.2. The DNA Group 

 A regular tetrahedron is a geometric entity of high symme-
try. All possible rotational motions which keep the tetrahedron 
fixed in the space form a group, called a tetrahedron group or 
T-group. As shown in (Fig. 2D), a tetrahedron group consists 
of 12 operational elements, which are described below. 

I, i.e., the identity operation; 

Rx, Ry and Rz, i.e., the 180° rotation along x, y and z axes, 
respectively; 

RA, RC, RG and RT, i.e., the 120° rotation along AO, CO, GO 
and TO axes, respectively; 

R2
A, R2

C, R2
G and R2

T, i.e., the 240° rotation along AO, CO, 
GO and TO axes, respectively. 

 A point with coordinates x, y and z will be transformed 
accordingly under the operational elements of the T-group. 
For example, 

I: xx � , ,yy � zz � ;

xR : xx � , yy �� , zz �� ;

yR : xx �� , yy � , zz �� ;

zR : xx �� , yy �� , zz � .

Fig. (1). Chemical structures of four DNA bases, displaying the basic symmetry. 
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Fig. (2). The coordinate system based on the regular tetrahedron. A)
a cube displaying the basic symmetry: R/Y, M/K and S/W symme-
try; B) an extended plot for the cube. C) a cube and its inscribed 
tetrahedron; D) a coordinate system is set up to establish the Z-
curve theory. 

Table 1. Twelve Elements of the DNA Group (A4 Group or 
the Tetrahedron Group). 

Element A4 Group Tetrahedron Group 

I A     C     G     T x        y        z 

Rx G     T     A     C x       -y       -z 

Ry C     A     T     G -x        y       -z 

Rz T     G     C     A -x       -y        z 

RA A     T     C     G z       x         y 

RC G     C     T     A z      -x        -y 

RG T     A     G     C -z       -x        y 

RT C     G     A     T -z        x       -y 

R2
A A     G     T     C y       z        x 

R2
C T     C     A     G -y       -z        x 

R2
G C     T     G     A -y        z       -x 

R2
T G     A     C     T y       -z       -x 

 The transforms of x, y and z under the 12 operations of 
the T-group are listed in (Table 1). The four elements I, Rx,
Ry and Rz form an invariant subgroup of the T-group, which 
is isomorphic to the Klein-4 group, or K4 group. The K4 
group and its cosets exhaust the T-group. Therefore, all the 
12 elements of the T-group can be divided into four classes, 
which are (I), (Rx, Ry, Rz), (RA, RC, RG, RT) and (R2

A, R2
C, R2

G,
R2

T). 

 On the other hand, the set of all possible permutations of 
four objects forms a symmetric group, denoted by S4.
Among the 24 elements of the symmetric group S4, the set of 
all 12 even permutations forms an invariant subgroup of S4,
referred to as the alternative group of order 4, denoted by A4.
The DNA group is defined as a particular A4 group, in which 
the permuted objects are the four DNA bases A, C, G and T. 
According to the group theory, the T-group and A4 group are 
isomorphic with each other. From the perspective of the ab-
stract group, the T-group and the A4 group are the same 
group, because they have the same group structure and ma-
trix representation. The four bases A, C, G and T are as-
signed to the four vertices of the tetrahedron, as shown in 
(Fig. 2D). 

 The four characters A, C, G and T will be transformed 
accordingly under the 12 operational elements of the DNA 
group or the A4 group. For example, 

I: AA � , ,CC � ,GG � TT � ;

xR : GA � , TC � ;

yR : CA � , T�G ;

zR : TA � , CG � .

 Biologically, the transform Rx is called transition, 
whereas the transform Ry and Rz are called transversion. Here 
Rz is termed as the complementary transform. 

 We have previously established that the T-group and the 
A4 group are the same group [3], and thus their elements 
should have one-to-one corresponding relations, as shown 
in (Table 1). Both the A4 group and the T-group are called 
the DNA group, which forms the basis of the Z-curve the-
ory. 

2.3. The Z-transform Formulas 

 Let the occurrence frequencies of the four bases, A, C, G 
and T in a DNA sequence be denoted by a, c, g and t, respec-
tively. The normalized condition reads 

,1=+++ tgca             (1)
indicating that among the four real numbers a, c, g and t,
only three of them are independent. 

 Suppose that X, Y and Z are the coordinates of a point P 
in the coordinate system shown in (Fig. 2D), which can be 
expressed by a linear combination of the four frequencies a, 
c, g and t, as follows 
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,
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tcgcccacZ
tbgbcbabY

tagacaaaX
           (2)

where a11, a12, …, c13, c14 are real coefficients. Eqs. (2) can 
be re-written as a matrix form 
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 The coordinates of the four vertices of the regular tetra-
hedron A, C, G and T are already known, and shown in (Ta-
ble 2). Based on the 12 numbers in (Table 2), the 12 coeffi-
cients can be uniquely determined, and eqs. (3) becomes 
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Equivalently, eqs. (4) may be re-written as 
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Table 2. Coordinates of the 4 Vertices of the Regular Tetrahe-
dron ACGTa.

Vertices 
Coordinates 

A C G T 

X 4/3  - 4/3 4/3  - 4/3

Y 4/3 4/3  - 4/3  - 4/3

Z 4/3  - 4/3  - 4/3 4/3
a Refer to Fig. 2 (d) for the original coordinate system, where the height of the tetrahe-
dron is 1. Consequently, the edge length of the tetrahedron is 2/6 , and the edge 

length of the cube is 2/3 .

 Eqs. (4) are called the Z-transform formulas, which were 
first derived in 1991 by a totally different way [1]. The Z-
transform formulas transform the four base frequencies into 
three coordinates of a point (called a mapping point) in a 
three-dimensional space. As previously indicated [1], for 
convenience, we introduced the reduced coordinate system x,
y and z

�
�
�

�

�
�
�

�

�

=

=

=

,
4
3

,
4
3

,
4
3

zZ

yY

xX
             (5)

such that  
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 In what follows, we always use the Z-transform formulas 
based on the reduced coordinate system eqs. (6), unless oth-
erwise indicated. Equivalently, eqs. (6a) can be also re-
written as a matrix form 
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Letting 

,,

��
�
�
�

�

�

��
�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

=

t
g
c
a

V
z
y
x

U
            (7)

and 
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Equivalently, eqs. (6b) may be re-written with a simplified 
form

.VZU �=              (9)

The reverse equation of eqs. (6) is 
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 It is shown that regardless of the values of x, y and z,
1�+++ tgca . In fact, it was shown in 1991 that the map-

ping point P (x, y, z), corresponding to a, c, g and t, is always 
situated within the tetrahedron ACGT shown in (Fig. 2D)
[1]. 

 To provide a clear visualization, the tetrahedron and the 
mapping points within it are projected onto some coordinate 
planes. Referring to (Fig. 2C and D), note that the tetrahe-
dron ACGT has 4 vertices A, C, G and T, and six edges AC, 
AG, AT, CG, CT and GT. Interestingly, the projection of six 
edges onto any coordinate plane forms a regular square and 
two diagonal lines within the square, where the projection of 
four vertices of the tetrahedron forms four vertices of the 
square, as shown in (Fig. 3A, B and C), for the x-y, x-z and 
y-z planes, respectively. Note that (Fig. 3A, B and C) are in 
accordance with (Fig. 1A, B and C), respectively. It should 
be noted that A, C, G and T are sometimes used to denote 
DNA bases, while the same symbols can represent vertices 
of the tetrahedron or squares. Refer to (Fig. 3A) first. Projec-
tions of four edges AG, AC, CT and GT form the four sides 
of the square, whereas those of AT and GC form the two 
diagonal lines of the square. Based on the Z-transform for-
mulas eqs. (6), the base composition of a DNA sequence, 
i.e., the values of a, c, g and t, can be visualized by observ-
ing the position of the mapping point in the square. For ex-
ample, if the DNA sequence has only one kind of base, say, 
A, then a = 1, c = g = t = 0. The corresponding mapping 
point is situated at the vertex A in (Fig. 2A). Similar results 
for (Fig. 3A) are summarized as follows. 

Vertex A: ;0,1 ==== tgca  Vertex C: ;0,1 ==== tgac

Vertex G: ;0,1 ==== tcag  Vertex T: ;0,1 ==== gcat
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Side AG: ;0,1 ===+ tcga  Side GT: ;0,1 ===+ catg

Side TC: ;0,1 ===+ gatc  Side CA: ;0,1 ===+ tgca

;2/1,0 >+> gax ;2/1,0 =+= gax ;2/1,0 <+< gax

;2/1,0 >+> cay ;2/1,0 =+= cay ;2/1,0 <+< cay

First quadrant: ;2/1and2/1 >+>+ caga

Second quadrant: ;2/1and2/1 >+>+ catc

Third quadrant: ;2/1and2/1 >+>+ tgtc

Fourth quadrant: ;2/1and2/1 >+>+ tgga

Diagonal AOT: ;cg = ;:AGT cg >� ;:ATC gc >�

Diagonal COG: ;ta = �AGC:   a > t; ;:CTG at >�

;and:AOG cgta >>� ;and:AOC gcta >>�

;and:COT gcat >>� ;and:GOT cgat >>�

Origin O: .4/1==== tgca

 Similar deductions for the annotation of (Fig. 3B and C)
are left out for readers who might be interested in doing so. 

Fig. (3). Projection of the 3-D coordinates onto planes. The projec-
tion of the 3-D coordinate system onto the A) x-y, B) x-z and C) y-
z planes. 

2.4. Linear Representation of the DNA Group 

 Based on the reduced coordinate system, the coordinates 
of the four vertices A, C, G and T can be represented by  
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 We previously established the linear representation of the 
DNA group, i.e., the tetrahedron group or the alternative 

group A4 in 1997 [3]. For readers’ convenience, here we re-
write the result (see eqs. (6) in [3] as follows:  
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 This matrix representation depicts correct relationships 
among the 12 elements of the DNA group. For example, a 
rotation of 180° along the x-axis in (Fig. 2D), followed by 
another similar rotation, leads to the original state, i.e.,  
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 That is to say, the matrix representation not only results 
in a one-to-one correspondence among elements of the DNA 
group, but also correctly reflects their relations based on the 
multiplication of matrices. 

 In the following, we show that the transform matrix (3x4) 
eq. (8a) and its variants also constitute a one-to-one repre-
sentation to each element of the DNA group. For this pur-
pose, eq. (8a) can be re-written as 
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where (A), (C), (G) and (T) are denoted by eqs. (11). Refer-
ring to (Table 2), we find that the order of the four nucleo-
tides above correspond to the element I of the A4 group. 
Similarly, its 11 variants can be derived, and are listed as 
follows 
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where ZI = Z. Based on the 12 Z matrices, we have 

.,,,,,,,,,,,, 2222 TGCATGCAzyxIiURVZ ii =�=� (15)

 Note that each Zi corresponds to each Ri by a way of one-
to-one correspondence. Therefore, the Z matrix also consti-
tutes a representation of the DNA group in this sense. How-
ever, it is not an ordinary representation of the DNA group, 
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because the similar multiplication relation such as eq. (13)
does not exist among the Z matrices. 
 It should also be noted that the Z-transform formulas eqs. 
(6), which transform the nucleotide frequencies into the co-
ordinates of a point in a three-dimensional space, are unique 
and invariant under the operations of the DNA group. The Z-
transform formulas shown in eqs. (6) represent the unique set 
of equations which reflect the inherent features of the DNA 
group. The Z-transform formulas are the core of the Z-curve 
theory. 

2.5. The Z-transform Formulas for Studying Correlations 
of Multiple Nucleotides 

 To extract features of a given DNA sequence, in addition 
to considering occurrence frequencies of a single nucleotide, 
correlations of multiple nucleotides should also be consid-
ered. Therefore, the Z-transform formulas should be ex-
tended to consider the correlations of multiple nucleotides. 
1). The case of a single nucleotide 
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Eqs. (16) are equivalent to eqs. (9). Here we have 3 (= 3x4°)
parameters. 

2). The case of di-nucleotides 
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where p(HA) represents occurrence frequencies of the di-
nucleotide HA, and so forth. Here we have 12 (=3x41) pa-
rameters. 

3). The case of tri-nucleotides 

��
�
�
�

�

�

��
�
�
�

�

�

�=
�
�
�

�

�

�
�
�

�

�

)(
)(
)(
)(

HITp
HIGp
HICp
HIAp

Z
z
y
x

HI

HI

HI � ,,,,, TGCAIH =         (18)

where p(HIA) represents occurrence frequencies of the tri-
nucleotide HIA, and so forth. Here we have 48 (=3x42) pa-
rameters. 

4). The case of tetra-nucleotides 
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where p(HIJA) represents occurrence frequencies of the four-
nucleotide HIJA, and so forth. Here we have 192 (=3x43)
parameters. 

5). The case of penta-nucleotides 

,,,,,,,,

)(
)(
)(
)(

TGCAKJIH

HIJKTp
HIJKGp
HIJKCp
HIJKAp

Z
z
y
x

HIJK

HIJK

HIJK

=

��
�
�
�

�

�

��
�
�
�

�

�

�=
�
�
�

�

�

�
�
�

�

�        (20)

where p(HIJKA) represents occurrence frequencies of the 
five-nucleotide HIJKA, and so forth. Here we have 768 
(=3x44) parameters. 

6). The case of hexa-nucleotides 
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where p(HIJKLA) represents occurrence frequencies of the 
six-nucleotide HIJKLA, and so forth. Here we have 3072 
(=3x45) parameters. 

 To calculate the occurrence frequencies of multiple nu-
cleotides for a given DNA sequence, we use a moving win-
dow with size = 1, 2, 3, 4, 5 and 6. Starting from the first 
nucleotide or base, move the sliding window rightward one 
base at a time, and then the frequencies can be calculated. 
Substitute the frequencies into eqs. (16) to (21), and then the 
Z-curve parameters can be obtained. For some applications, 
eq. (16), i.e., 3 parameters are sufficient. However, in some 
cases, more parameters are needed. The space spanned by 
the 3 parameters is denoted by V1, and similarly we have V2,
V3, V4, V5 and V6, respectively, corresponding to eqs. (16) to 
(21). Usually, the direct sum among different spaces is 
needed. For most applications, there are six possible choices  

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

�����

����

���

��

�

=

,VVVVVV
,VVVVV

,VVVV
,VVV

,VV
,V

V

654321

54321

4321

321

21

1
,         (22)

where the symbol �  represents the direct sum of two 
spaces. The dimensions of the spaces V1 to V6 are 3, 15 (= 
3+12), 63 (= 15+48), 255 (= 63+192), 1023 (= 255+768) and 
4095 (= 1023+3072), respectively. Generally, for the 
space m21 V...VVV ���= , the dimension is .14 �m

2.6. Quadratic Form of x, y and z

Starting from eq. (9)

,VZU �=              (9)

We have 
TTT ZVU �= ,           (23)

where “T” means the transpose operation of a matrix. Fur-
thermore, we find 

.VZZVUU TTT ���=�           (24)

Simple derivation shows that 

,14222 �=++ Szyx           (25)

where S is defined by 
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.2222 tgcaS +++=           (26)

 S, named as “genome order index” [7], is useful for de-
signing a fast genome segmentation algorithm [8, 9]. We 
also observed that for most genomes 

3/1<S .           (27)

Eq. (27) has a clear geometrical explanation. The surface of 
the inscribed sphere is described by the equation 
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 Therefore, S<1/3 implies that the mapping point is within 
the inscribed sphere [7]. 

2.7. The Z-curve 

 One of the most important applications of the Z-
transform formulas is to derive the equation of the Z-curve. 
Consider a DNA sequence with N bases that are inspected 
one base at a time. From the first base to the nth base, com-
pute accumulative numbers of the bases A, C, G and T, de-
noted by An, Cn, Gn and Tn, respectively. Based on the Z-
transform formulas eqs (6), we find 
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Multiplied by n to both hands of eq. (29), and letting 

),(),(),( nznznynynxnx nnn �=�=�=         (30)

we have 
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or equivalently 
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which was first derived in 1994 by an entirely different 
method [2]. It should be noted that An, Cn, Gn and Tn are the 
cumulative occurrence numbers of A, C, G and T, respec-
tively, in the sub-sequence from the 1st base to the nth base 
in the sequence with length N. We define A0=C0=G0=T0=0, 
therefore, x0 = y0 = z0 = 0. The Z-curve is defined as the con-
nection of the nodes P0 (x0, y0, z0), , P2 (x2, y2, z2), …, PN(xN,
yN, zN) one by one sequentially with straight lines. The con-
nection results in a curve with a zigzag shape, hence the 
name Z-curve. Note that the Z-curve always starts from the 
origin of the three-dimensional coordinate system. Once the 
coordinates xn, yn and zn (n = 1, 2, …, N) of a Z-curve are 
given, the corresponding DNA sequence can be recon-
structed uniquely from the so-called inverse Z-transform 
formulas 
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where the normalized relation of An + Cn + Gn + Tn = n is 
used. 

 The three components of the Z-curve, xn, yn and zn, repre-
sent three independent distributions, that is, those of 
purine/pyrimidine (R/Y), amino/keto (M/K) and strong-H 
bond/weak-H bond (S/W) bases, respectively, and they com-
pletely describe the DNA sequence being studied. In the sub-
sequence constituted from the 1st base to the nth bases of the 
sequence, when purine bases (A/G) are in excess of 
pyrimidine bases (C/T), xn > 0, otherwise, xn < 0, and when 
the numbers of purine (A/G) and pyrimidine bases (C/T) are 
identical, xn = 0. Similarly, when amino bases (A/C) are in 
excess of keto bases (G/T), yn > 0, otherwise, yn < 0, and 
when the numbers of amino (A/C) and keto bases (G/T) are 
identical, yn = 0. Finally, when weak H-bond bases (A/T) are 
in excess of strong H-bond bases (G/C), zn > 0, otherwise, zn
< 0, and when the numbers of (A/T) and (G/C) bases are 
identical, zn = 0. The xn and yn components are termed RY 
and MK disparity curves, respectively. Similarly, the AT and 
GC disparity curves are defined by (xn + yn)/2 and (xn-yn)/2, 
which shows the excess of A over T and G over C, along the 
genome. The RY and MK disparity curves, as well as AT 
and GC disparity curves, can be used to predict replication 
origins of various genomes. 

2.8. The GC Profile 

 For most genome sequences, Chargaff Parity Rule II 
holds, i.e., NN TA �  and NN GC � , where N is the length of a 
genome or a chromosome. According to eqs (31), we find 

0�nx , 0�ny , ,1>>nz 1for >>n                                 (33)

 Therefore, the curves of zn ~ n are roughly straight lines 
in this case. To amplify the variations of the straight-line-like 
curve, the curve of zn ~ n is firstly fitted by a straight line 
using the least square technique, 

,knz =                                                                              (34)

where (z, n) is the coordinate of a point on the fitted straight 
line and k is its slope. We define the z’ curve, where 

.knzz nn �=�                                                                     (35)

 Therefore, the variations of zn ~ n curve deviated from 
the straight line, which corresponds to a constant G+C con-
tent (see eq. (36) below), are protruded by the z’ curve. One 
may also use the average slope of the zn ~ n curve to com-
pute k, k = zN / N, where zN is the terminal coordinate of the 
zn ~ n curve and N is the sequence length. The essence of the 
z’ curve is to display the variations of the G+C content along 
a genome or chromosome based on the cumulative count of 
G and C bases. Let CG + denote the average G+C content 
within a region �n in a sequence, it was shown that [10]. 
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where nzk n ���=� /  is the average slope of the z’ curve 

within the region �n. Both quantities of nz��  and �n can be 
calculated by using the z’ curve. It is clear to see from eq. 
(36) that a jump in the z’ curve, i.e., 0'>k , indicates a de-
crease of G+C content or an increase of A+T content, 
whereas a drop in the z’ curve, i.e., 0'<k , indicates an in-
crease of G+C content or a decrease of A+T content. The 
region �n is usually chosen to be a fragment of a DNA se-
quence. The above method to calculate G+C content is called 
the windowless technique [10]. 

 The GC profile is defined as z�� , because it is more intui-
tive in the sense that a jump denotes an increase in GC con-
tent. We emphasize the importance of the GC profile for 
genome studies, because it represents a windowless tech-
nique to calculate the G+C content along genome sequences. 

2.9. A Segmentation Algorithm Based on the Z-transform 

 Let n be a point within a DNA sequence of length 
N )12( ��� Nn , which divides the whole sequence into two 
parts: the right and left sub-sequences, and then denote 
frequencies of bases in the right sub-sequence and left sub-
sequence by (ar, cr, gr, tr) and (al, c1, g1, t1), respectively. The 
frequencies are mapped onto two points, PR (xr, yr, zr) and 
PL(xl, yl, zl), in a 3-D space, where  
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The square of Euclidean distance between the two points is 
denoted by D, where  

222 )()()()( lrlrlr zzyyxxnD �+�+�= .                                 (38)

Substituting eqs. (37) into eq. (38), we have 

])()()()[()( 2222
lrlrlrlr ttggccaaCnD �+�+�+��= ,          (39)

where C is a constant. Note that D is a function of n. Sup-
pose that when *nn = )12( * ��� Nn , Maximun.)( * =nD  Then 

the point *n is called a compositional segmentation point [8]. 
The segmentation algorithm is recursive, i.e., after n* is de-
termined, the same procedure is applied to both the left and 
right sub-sequences recursively, until D(n) is less than a 
given threshold. For more details refer to [8]. 
 Eq. (39) can be extended to the case of a binary sequence. 
For example, by replacing the bases G and C with S, and bases 
A and T with W, a DNA sequence can be transformed into a 
binary sequence of S and W. In this case, the algorithm results 
in compositional segmentation points according to GC con-
tent. A software, called GC-Profile, was developed to imple-
ment the algorithm for genome segmentation [9]. 

3. PART-2: APPLICATIONS IN GENOME ANALYSIS 

 The Z-curve theory has been successfully applied in 
many different research areas in analyzing genomes of bacte-

ria, archaea, eukaryotes and viruses. The applications in-
clude, to name a few, the identifications of protein-coding 
genes, replication origins, horizontally-transferred genomic 
islands, isochore structures, genome segmentation points, 
promoters and translational start sites, as well as studies on 
nucleosome positioning, DNA curvature profiles, phyloge-
netics and comparative genomics, in various organisms (Ta-
ble 3). It is not practical to cover all these areas in detail in a 
single review, and thus we will only highlight some studies. 

3.1. Identification of Protein-coding Genes 

 One of the most important applications of the Z-curve 
theory is gene-finding in various genomes. The principle in 
using the Z-curve theory to identify protein-coding genes is 
straightforward. Based on the Z-transform formulas, the oc-
currence frequencies of 4 bases in a DNA sequence are 
mapped onto a point in a 3-dimensional (3-D) or 15-, 63-, 
255-, 1023- and 4095-D space, depending on the number of 
correlated bases under consideration (eqs. (16) to (22)). The 
first application was for gene recognition in the budding 
yeast genome, where a 3-D space (eqs. (16)) was adopted 
[11]. However, since the protein coding sequence has 3 
phases, the 3 Z-curve parameters are expanded to 9 (3x3 
phases) parameters. Adding the genome order index S (eq. 
(26)) into the set of 9 Z-curve parameters, a 10-D space is 
spanned by the 10 parameters. It was observed that the map-
ping points of protein coding sequences and non-coding se-
quences are distributed in two distinct regions in the 10-D 
space, although there is minor overlapping [12]. Therefore, 
the two kinds of points can be discriminated by the Fisher 
discriminant method, or other classifiers, such as support 
vector machines. 

 The Z-curve algorithm was first applied to recognize pro-
tein coding genes in the budding yeast (Saccharomyces cere-
visiae) genome with an accuracy better than 95%, where the 
accuracy is defined as the average of sensitivity and specific-
ity [11]. The same algorithm achieved an accuracy rate over 
98% in the Vibrio cholerae genome, based on 9 parameters 
only [13]. The success of the above studies led to the devel-
opment of a series of ab initio gene-finding software for 
various species with different numbers of Z-curve parame-
ters. 

3.1.1. Gene-finding in Bacterial, Archaeal, Phage and Vi-
rus Genomes 

 Based on 33 Z-curve parameters, we developed 
ZCURVE 1.0, which is an ab initio gene-finding software 
for bacterial and archaeal genomes [12]. Based on the 9 Z-
curve parameters, ZCURVE_V was developed for identify-
ing protein-coding genes in viral and phage genomes [14]. 
We also developed the software, ZCURVE_CoV, for gene-
finding in coronavirus genomes, with special applications for 
SARS-coronavirus genomes [15, 16]. 
 The above set of gene-finding software has been 
widely used in various laboratories worldwide. For exam-
ple, ZCURVE 1.0 has been used for annotating protein-
coding genes in many newly sequenced bacterial ge-
nomes, such as those of Acinetobacter baumannii [17], 
Variovorax paradoxus [18], Amycolatopsis mediterranei
[19], Bacillus thuringiensis [20], Streptomyces tendae [21], 
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Table 3. A Partial List of Z-curve Applications in Genome Analysis. 

Research areas 
Involved Z-
Curve Com-
ponents 

Algorithm, Software 
or Database 

Life Domains 
or Virus 

Species 

Bacteria 

Acinetobacter baumannii [17], Variovorax paradoxus [18], Amy-
colatopsis mediterranei [19], Bacillus thuringiensis [20], Strepto-
myces tendae [21], Phaeobacter gallaeciensis [22], Desulfobacte-
rium autotrophicum [23], Mycobacterium tuberculosis [24], Ma-
gnetospirillum gryphiswaldense [25], Beggiatoa [26] 

Phage, plasmid 
Fosmids of marine Planctomycetes [127], plasmids in the human 
gut [128], phage Rtp [129] 

Archaea Archaea of the ANME-1 group [27] 

Z-curve algorithm [1, 
2], ZCURVE [12] 

Eukaryotes 
Leptospira interrogans [130], Yeast [11], Short human protein-
coding genes [56, 131], Drosophila [55] 

Virus, 
Coronavirus, 
phages 

Prophage [33], Me Tri virus [28], novel human coronaviruses 
NL63 and HKU1 [34], novel bat coronaviruses [35], bat coronavi-
ruses 1A, 1B and HKU8 [36], novel human coronavirus [37] 

Protein-coding gene 
recognition a

x, y, z, S

ZCURVE_V [14], 
ZCURVE_CoV [15] 

SARS_CoV Various strains of SARS_CoV [38-53] 

Archaea 

Methanosarcina mazei[69], Halobacterium species NRC-1[63], 
Methanocaldococcus jannaschii [68], Sulfolobus acidocaldarius
[72], Haloferax volcanii [73], Desulfurococcus kamchatkensis
[74], Thermococcus sibiricus [75], Sulfolobus islandicus [76] 

Bacteria 

Moraxella catarrhalis [79], Sorangium cellulosum [80],  Mi-
crocystis aeruginosa [80], Cyanothece [81], Cupriavidus metal-
lidurans [82], Azolla filiculoides [83], Variovorax paradoxus [18], 
Corynebacterium pseudotuberculosis [84], [85], Orientia tsutsu-
gamushi [86], Propionibacterium freudenreichii [87], Laribacter
hongkongensis [88], Legionella pneumophila [89], Ehrlichia canis
[90] 

Replication origin 
identification 

AT, GC, MK 
and RY 
disparity b

Ori-finder [78], DoriC 
[132, 133] 

Phage, plasmid 
Streptococcus pneumoniae Virulent Phage Dp-1 [134], R-plasmid 
pPRS3a from Bacillus cereus [135] 

Bacteria 

Corynebacterium efficiens [105], Rhodopseudomonas palustris
[106], Corynebacterium glutamicum [104], Vibrio vulnificus and 
Bacillus cereus [103], Agrobacterium tumefaciens, Rolstonia
solanacearum, Xanthomonas axonopodis, Xanthomonas campes-
tris, Xylella fastidiosa and Pseudomonas syringae [107], Strep-
tomyces lividans [108], Parachlamydiaceae UWE25 [109], epsi-
lon proteobacteria Sulfurovum and Nitratiruptor [110], Acineto-
bacter oleivorans [111], Silicibacter pomeroyi [112] 

Genomic island iden-
tification 

z’ GC profile [9, 10] 

Archaea Haloquadratum walsbyi [136] 

Eukaryotes 

Human genome: isochores [94, 98, 137] and replication time 
zones [138]; Isochores for chicken [97], Arabidopsis thaliana [96], 
mice [95] and pig [99]; DNA curvature profile for Aspergillus
fumigatus [100] 

GC content variation, 
isochore, genome 
segmentation 

z’, S GC profile [9, 10] 

Bacteria 
Bifidobacterium longum [139], Streptomyces avermitilis [140], 
Erwinia amylovora [141], Ralstonia pickettii [142] 

Bacteria 
Translational start sites [113] and promoters [115] of Escherichia
coli and Bacillus subtilisPromoter, transla-

tional start sites, nu-
cleosome positioning 

x, y, z 
Z-curve algorithm [11, 
12], GS-finder [113] 

Eukaryotes 
Human Pol II promoter [114], Yeast genome for stable and dy-
namic nucleosome positioning [116] 
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(Table 3) contd…. 

Research areas 
Involved Z-
Curve Com-
ponents 

Algorithm, Software 
or Database 

Life Domains 
or Virus Species 

Comparative genom-
ics, genome visualiza-
tion 

x, y, z, z’ Z-curve database [117]
Bacteria, ar-
chaea, eukaryo-
tes and viruses 

Bacillus cereus [103], Bacillus cereus ATCC 10987 [119], Coro-
navirus [118], human immunodeficiency virus [120], human [121, 
143], E. coli [122], Seven GC-rich bacteria [126], 90 species [1], 
Aeropyrum pernix K1 [124], Streptomyces coelicolor [125] 

a For some genomes, e.g., those of the bacterium Mycobacterium tuberculosis H37Ra [24] and Me Tri virus [28], ZCURVE was the only one used for genome annotation; in most 
cases, however, protein-coding gene recognition was performed by combining results of ZCURVE with those of others [31, 32], such as Glimmer [29] and Genmark [30]. It is note-
worthy that ZCURVE is especially suitable for genomes with high GC content, e.g., GC content > 56% [12]. 
b RY, MK, AT and GC disparity curves correspond to x, y, (x+y)/2, (x-y)/2, respectively.

Phaeobacter gallaeciensis [22], Desulfobacterium autotro-
phicum [23], Mycobacterium tuberculosis [24], Magne-
tospirillum gryphiswaldense [25] and Beggiatoa [26]. 
ZCURVE 1.0 was also used for annotating archaeal ge-
nomes, e.g., archaea of the ANME-1 group [27] (Table 3). 
 For some genomes, e.g., those of the bacterium Myco-
bacterium tuberculosis H37Ra [24] and Me Tri virus [28], 
ZCURVE 1.0 was the only software used for genome anno-
tation, more frequently, however, results of ZCURVE 1.0 
were combined with those of others, such as Glimmer [29] 
and Genmark [30]. For instance, ZCURVE 1.0 is integrated 
into meta-gene-finding tool YACOP [31] and GARSA [32]. 
It is noteworthy that ZCURVE 1.0 is especially suitable for 
genomes with high GC contents, e.g., GC content > 56% 
[12]. Likewise, ZCURVE_V and ZCURVE_CoV have been 
widely used for annotating protein-coding genes in newly 
sequenced genomes of viruses, coronaviruses [28, 33-37] 
and SARS coronaviruses [38-53]. 
3.1.2. Gene-finding in Eukaryotic Genomes 

 Algorithms based on the Z-curve theory have been used 
for recognizing protein coding genes in a number of eukary-
otic genomes, e.g., the budding yeast genome [11], 
Leptospira interrogans genome [54] and Drosophila 
genomes [55]. The Z-curve algorithm has also been used in 
recognizing short coding sequences of human genes [56]. 
The algorithm based on the 189 Z-curve parameters was 
shown to be the most accurate among those tested for a 
given database, with the second one being an algorithm 
based on the Markov chain of order five [56], and the result 
was later confirmed by an independent study [57]. Recogni-
tion of exons and introns of human genes was also studied 
by using the Z-curve method [58]. 

3.1.3. Gene-finding Using the Fast Fourier Transform 
(FFT) Technique 

 The standard genetic code defines a mapping between a 
codon and an amino acid. According to this mapping, protein 
coding regions are divided into a series of tri-nucleotides 
(codon or triplet), resulting in a period-3 property in coding 
regions. Therefore, it is possible to find coding regions by 
exploring the 3-periodicity of DNA sequences. Conse-
quently, the first step is to transform the DNA sequence into 
a digital sequence or signal, and the Z-curve is especially 
suitable for this purpose. 

 According to eqs. (31), 11 ±=�=� + nnn xxx , 11 ±=�=� + nnn yyy

and 11 ±=�=� + nnn zzz . Applying the FFT to x� , y�  and z� ,

respectively, we are able to detect the 3-periodicity in the 
FFT power spectrum for each of the three numerical se-
quences. To increase the sensitivity, a lengthen-shuffle FFT 
algorithm was proposed for finding protein coding regions 
[59]. For example, the method was used to detect introns in 
the C. elegance chromosome III [60], and was later im-
proved by using an adaptive filter to predict the exons in 
DNA sequences [61]. The relationship between the Z-curve 
and the Fourier transform for DNA sequence classification 
was studied in details [62]. 

3.2. Prediction of Replication Origins 
3.2.1. Prediction of Replication Origins of Archaeal Ge-
nomes 

 Bacterial and eukaryotic genomes contain single and 
multiple replication origins, respectively. It was once a mys-
tery whether archaea could have multiple oriCs. 
 Using the Z-curve method, we firstly predicted three 
oriCs as well as their precise locations for Sulfolobus solfa-
taricus [63], and the prediction was consistent with later ex-
perimental evidence [64-67]. 
 The archaeon Methanococcus jannaschii was the first to 
have its genome sequenced, however, its oriCs were notori-
ously difficult to locate by both theoretical and experimental 
methods. The Z-curve method predicted 2 oriCs [68] that 
were supported by later experimental evidence [66]. Simi-
larly, we predicted a single oriC in the genome of Methano-
sarcina mazei [69] and 2 oriCs in the genome of A. pernix
[70], which were also supported by experimental evidence 
[71]. The Z-curve method has been commonly used for an-
notating newly sequenced archaeal genomes, such as those 
of Sulfolobus acidocaldarius [72], Haloferax volcanii [73], 
Desulfurococcus kamchatkensis [74], Thermococcus sibiri-
cus [75], and Sulfolobus islandicus [76]. 

3.2.2. Prediction of Replication Origins in Bacterial Ge-
nomes 

 The Z-curve method is an effective technique that detects 
the asymmetrical nucleotide distribution around replication 
origins. The Z-curve contains all the information of its corre-
sponding DNA sequence, and therefore the GC-skew [77] is 
a special case of the Z-curve. Thus the Z-curve can reveal 
nucleotide asymmetry that is not detectable by GC skew 
[70]. For instance, RY, MK and AT disparity curves show an 
oriC in the archaeon Methanosarcina mazei Tuc01 (Fig. 
4A), while RY, MK, and GC disparity curves show an oriC
in the bacterium Salmonella enterica tr. CT18 (Fig. 4B). 
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 Ori-Finder, an integrated in silico method to predict oriC
regions of bacterial genomes, has been developed, based on 
the Z-curve method, along with distributions of DnaA box 
patterns, indicator genes, and phylogenetic relationships 
[78]. Ori-finder has become a commonly used annotation 
tool for identifying oriCs in newly sequenced archaeal and 
bacterial genomes, e.g., those of Moraxella catarrhalis [79], 
Sorangium cellulosum [80], Microcystis aeruginosa [80], 
Cyanothece [81], Cupriavidus metallidurans [82], Azolla 
filiculoides [83], Variovorax paradoxus [18], Corynebacte-
rium pseudotuberculosis [84, 85], Orientia tsutsugamushi 
[86], Propionibacterium freudenreichii [87], Laribacter 
hongkongensis [88], Legionella pneumophila [89], and Ehr-
lichia canis [90] (Table 3). 

3.3. Studies of Genome Domain Structures 

 G+C content is an important characteristic of genome 
sequences. In the human genome, based on density gradient 
ultra-centrifugation experiments, it was found that long do-
mains of relatively homogenous G+C content exist, and 
these domains are referred to as isochores [91, 92]. Tradi-
tionally, the G+C content along the genome is calculated 
using an overlapping or non-overlapping sliding window 
technique, based on which, however, isochores are hard to 
identify [93]. We developed a windowless technique in G+C 
content calculation, the GC profile [9, 10], which was used 

to study isochore structures in genomes of human [94], 
mouse [95], Arabidopsis thaliana [96] and chicken [97]. 
Based on the GC profile, the technique of wavelet multi-
resolution analysis was used to identify isochore boundaries 
in the human genome [98]. For instance, a clear domain 
structure is revealed by the GC profile in chromosome 11 of 
finch (Fig. 4C). Other groups also used GC-Profile to study 
isochores in the pig genome [99] and to assess DNA curva-
ture profiles for Aspergillus fumigatus [100]. 

3.4. Identification of Horizontally-transferred Genomic 
Islands in Bacterial Genomes 

 It is generally accepted that horizontal gene transfer 
(HGT) plays an important role throughout the genome evolu-
tion of prokaryotes, because HGT alters the genotype of a 
bacterium, and could potentially lead to new traits [101]. 
Genomic islands (GIs) contain clusters of horizontally trans-
ferred genes and therefore, identification of horizontally-
transferred GIs is an important biological issue. Because the 
GC profile is sensitive to changes in GC content, it is a pow-
erful tool in identifying GIs [102]. 
 Based on the method of GC profile, GIs in many bacteria 
have been identified, e.g., Bacillus cereus [103], Corynebac-
terium glutamicum [104], Corynebacterium efficiens [105], 
Vibrio vulnificus CMCP6 [104], and Rhodopseudomonas 
palustris [106]. For instance, it was once believed that R.

Fig. (4). The Z-curve reveals features of archaeal, bacterial and eukaryotic genomes. The Z-curve shows replication origins in genomes of A)
the archaeon Methanosarcina mazei Tuc01 and B) the bacterium Salmonella enterica subsp. Typhi str. CT18. The Z-curve shows C) the 
domain structure in chromosome 11 of finch, and D) horizontally-transferred genomic elements in the genome of Streptococcus pneumoniae
ATCC 700669. 
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palustris does not have GIs, but analysis based on the GC 
profile identified 3 GIs that help explain how this bacterium 
survives in a versatile environment [106]. Corynebacterium 
efficiens can grow and produce glutamate at temperature 
above 40°C; unexpectedly, however, an aspartate kinase is 
less thermostable. This kinase gene is located in a GI that we 
identified, and this result suggests an explanation for its be-
ing less thermostable, i.e., the adaptive mutations have not 
occurred extensively due to the recent HGT [105]. For in-
stance, horizontally transferred elements in Streptococcus 
pneumoniae ATCC 700669 can be clearly shown by the GC 
profile (Fig. 4D). The GC profile method has also been used 
for identification of GIs in other genomes, e.g., those of plant 
pathogens [107], Streptomyces lividans [108], Parachlamy-
diaceae UWE25 [109], epsilon proteobacteria Sulfurovum 
and Nitratiruptor [110], Acinetobacter oleivorans [111], and 
Silicibacter pomeroyi [112]. 

3.5. Identification of Promoters, Translation Start Sites 
and Nucleosome Positioning 

 Based on the behavior of the Z-curve near the bacterial 
gene translation start sites (TSS), a self-training method was 
proposed to find TSS with high accuracy [113]. It is likely 

that methods based on the same principle can also be used to 
recognize TSS in archaea and eukaryotes as well. Indeed, the 
Z-curve method was used to recognize human Pol II promot-
ers [114] and promoters for bacterial genomes [115]. The 
positioning of nucleosomes, an elementary structural unit in 
eukaryotic chromatin, is pivotal in regulating many cellular 
processes, such as gene transcription. The Z-curve algorithm 
has been used to construct a genome-wide dynamic nu-
cleosome positioning map for the budding yeast [116]. 

3.6. Visualization of DNA Sequences, Comparative Ge-
nomics and the Z-curve Database 

 One of the aims for developing the Z-curve theory is to 
visualize DNA sequences. By using the Z-curve, features of 
related DNA sequences can be grasped quickly in a perceiv-
able form [1, 2]. Therefore, we constructed the Z-curve data-
base (www.zcurve.net), which contains Z-curves for cur-
rently available genomes, online Z-curve drawing tools and 
other Z-curve related software [117]. For instance, human 
chromosome 6 and chimpanzee chromosome 6 are homolo-
gous, and they apparently have similar Z-curve patterns (Fig. 
5A and B). A typical example is the visualization of the ge-

Fig. (5). Genomic nucleotide composition features revealed by the Z-curve method. 3-D Z-curves for human chromosome 6 (A) and chim-
panzee chromosome 6 (B). The 2 homologous chromosomes show similar Z-curves. To show global nucleotide composition patterns, Z-
curves have been smoothed for 50,000 times by using the B-spline function. An ORF-flower phenomenon is revealed by the Z-curve method 
in genomes with high GC content. All open reading frames are mapped onto a 9-dimensional space using the Z-curve method, and protein-
coding ORFs are located in a distinct region, compared with non-coding ORFs and intergenic sequences. Shown are principal component 
analysis for the genomes of Ralstonia solanacearum GMI1000 (C) and Streptomyces avermitilis MA 4680 (D). F0, F1, F2, R0, R1, and R2 
stand for reading frames of protein-coding, forward 1, forward 2, non-coding reverse 0, reverse 1 and reverse 2, respectively. 



90    Current Genomics, 2014, Vol. 15, No. 2 Zhang and Zhang 

nomes of related SARS-coronaviruses. Based on the 3-D 
coordinates of the corresponding Z-curves, the phylogenetic 
tree was constructed and was found to be in agreement with 
that based on sequence alignment [118]. Comparative ge-
nomics based on the GC profile was used to identify ge-
nomic islands [103, 119]. 

 According to eqs. (6), the base composition of a DNA 
sequence can be represented by a point in a 3-D space, thus 
providing an intuitive method to display base compositions. 
This method was used to study the codon usage in the ge-
nomes of AIDS virus [120], human [121], E. coli [122], Vi-
brio cholerae [123], Aeropyrum pernix K1 [124], Streptomy-
ces coelicolor A3(2) [125] and seven GC-rich bacteria [126]. 
In prokaryotic genomes with high-GC content, coding ORFs 
and non-coding ORFs are located in distinct regions in a 9-
dimensional space revealed by the Z-curve method, forming 
a flower-like pattern (Fig. 5C and D). 

4. SUMMARY 

 The three components of the Z-curve, x, y and z, which 

display distributions of purine/pyrimidine (R/Y), amino/keto 

(M/K) and strong-H bond/weak-H bond (S/W) bases, respec-

tively, are independent, and completely describe the DNA 

sequence. The x and y components are related to the dispari-

ties of RY, MK, AT and GC bases, and can therefore be used 

to identify oriC regions in prokaryotic and eukaryotic ge-

nomes. The component z is related to G+C content, and can 

therefore be used to identify domain structures of eukaryotic 

genomes and genomic islands of prokaryotic genomes. The 

set of all three components can be used in identifications of 

protein-coding genes, promoters, translational start sites or in 

other bioinformatics issues. Generally, further applications 

are expected to benefit from the use of functions based on 

the three components, i.e., f (x, y, z), with potential integra-

tion of other parameters. 

 In conclusion, the methodology of the Z-curve provides a 
geometrical approach to analyzing genomic DNA sequences. 
Considerable progress in applying the Z-curve method has 
been achieved, and the Z-curve theory provides a solid basis 
for future developments. 
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