
[16:08 15/6/2009 Bioinformatics-btp320.tex] Page: 1838 1838–1840

BIOINFORMATICS APPLICATIONS NOTE Vol. 25 no. 14 2009, pages 1838–1840
doi:10.1093/bioinformatics/btp320

Genome analysis
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ABSTRACT

Summary: NTAP is designed to analyze ChIP-chip data generated
by the NimbleGen tiling array platform and to accomplish various
pattern recognition tasks that are useful especially for epigenetic
studies. The modular design of NTAP makes the data processing
highly customizable. Users can either use NTAP to perform the full
process of NimbleGen tiling array data analysis, or choose post-
processing modules in NTAP to analyze pre-processed epigenetic
data generated by other platforms. The output of NTAP can be saved
in standard GFF format files and visualized in GBrowse.
Availability and Implementation: The source code of NTAP is freely
available at http://ntap.cbi.pku.edu.cn/. It is implemented in Perl and
R and can be used on Linux, Mac and Windows platforms.
Contact: ntap@mail.cbi.pku.edu.cn; luojc@pku.edu.cn;
hekun78@gmail.com

1 INTRODUCTION
Genome-level high-density tiling arrays are becoming more
accessible for genome-wide profiling studies including trans-
criptome identification (Bertone et al., 2004), transcription factor
binding site identification (Lee et al., 2007), histone modifi-
cation profiling (Gendrel et al., 2005; Li et al., 2008), DNA
methylation profiling (Hayashi et al., 2007) and comparative
genome hybridization. Specific analysis methods and tools are
required for each type of study because the strategies behind
different tiling array applications vary extensively. As a result,
several models have been proposed and software tools have been
developed for the analysis of different types of tiling array data
(Chung et al., 2007; Ji et al., 2008; Li et al., 2005; Wang
et al., 2006; Zhang et al., 2007). However, there is still room
to improve for data analysis of epigenetic features including
histone modifications and DNA methylation. The recognition of
distribution patterns of modifications at both the local (gene) and
global (chromosome) levels are usually required to infer biologically
meaningful conclusions (Hayashi et al., 2007; Li et al., 2008).
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Here, we present a NimbleGen Tiling array data Analysis Package
(NTAP) designed for histone modification profiling analysis (Li
et al., 2008) that can also be applied to other ChIP-chip data (Lee
et al., 2007). The advantage of our package is its ability to generate
reports for various pattern recognition questions instead of focusing
only on identifying significantly enriched oligos or genomic regions.

2 FUNCTIONS AND FEATURES
NTAP was developed using the R statistical language to take
advantage of the powerful statistical functions of other open
source packages especially those from the Bioconductor project
(http://www.bioconductor.org/). It contains five main steps for data
analysis: importing, normalization, feature identification, oligos
mapping and post-processing for pattern recognition.

2.1 Data importing
We implemented an R function similar to the ‘read.maimages’
function in the limma package (Smyth 2004) to import NimbleGen
raw data into limma data object formats for normalization.

2.2 Data normalization
Users can apply various microarray normalization methods to
the imported datasets through the limma package functions
‘normalizeBetweenArrays’ and ‘normalizeWithinArrays’. Unlike
the expression profiling arrays whose log transformed ratio
distributions are usually symmetric around zero, the distribution of
the ChIP-chip result tends to skew to the ChIP channel. Because
only the protein-bound DNA fragments will be pulled down by a
specific antibody, more positive log transformed ChIP/Input ratios
are expected. Thus, the rank-invariant set scheme (Buck and Lieb,
2004) was incorporated for better data normalization.

2.3 Feature identification
Tiling arrays usually contain several oligos per single gene rather
than one oligo per gene. For example, the traditional whole-genome
array for expression studies in Arabidopsis thaliana usually contains
only 23k oligos, while a customized whole-genome tiling array
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Fig. 1. Demonstration of two different methods for the alignment of gene
models and reorganization of histone modification patterns. (A) Two different
strategies to align genes (three genes with different lengths were used as
examples). The alignment without gene length normalization overlapped
all the oligos based on their absolute distance (kb) to the transcription
start site while with length normalization based on the relative positions
(percentile) to the transcription start site. (B) The histone modification
distribution pattern between different user-defined gene sub-groups that
contain various length genes in this particular case. (C) The tissue-specific
histone modification distribution pattern on all genes by the two different
strategies demonstrated in (A).

tiled at ∼250 bp resolution may contain ∼400k oligos. The much
larger number of oligos on a single array makes the traditional
methods for feature identification unfeasible. For tiling array data,
expressed mRNA or pulled-down DNA fragments can cause the
signal of a group of neighboring oligos to increase simultaneously.
Therefore, our package implements the non-parametric Wilcoxon
rank-sum method to compare the signal differences between the
ChIP channel and the reference channel for a group of oligos using
sliding windows. Under certain circumstances, however, the density
of some tiling arrays may not be high enough to use the Wilcoxon
method. In these cases, we utilize simple comparison linear models
implemented in limma (Smyth 2004) to identify single oligos whose
signal increased significantly in the ChIP channel. Then, we consider
a genomic region as ‘positive’ if the region contains a single oligo
that meets stringent user-defined criteria or the region contains a
group of neighboring oligos that meet less stringent criteria.

2.4 Mapping oligos to gene models
Genome data are usually kept up-to-date by genome sequencing
consortia or curation groups, who usually release their data as
standard XML format files that can be parsed to easily obtain
coordinates of gene models. A Perl module was implemented to
retrieve records of the gene model position information on each
chromosome and to determine the relative position of a specific
oligo to its nearby gene model(s). Signal distribution patterns among
different groups of genes can then be determined based on the stored
relative position information.

2.5 Post-processing functions
The following questions are frequently asked in epigenomics
research. What is the modification distribution pattern relative to
genes and does it vary between different organs/tissues? Is there

an association between specific histone modification levels and
gene sizes, or gene expression levels? To answer these questions,
we implemented several R functions to align genes, to calculate
the average ChIP/Input intensity ratio of the oligos within sliding
windows, and to plot the final results for different groups (Fig. 1).

2.6 Result visualization
Quality control is a key step to guarantee the validity of the overall
data analysis. An R function was implemented to calculate the
raw intensities correlation coefficient between any pair of two
replicates. MA-plots of array hybridization results are also generated
in order to examine the intensity ratio (M) versus averaged intensity
(A) to discover possible non-linear biases that require special
normalization methods. After raw data processing, all the oligos
are mapped back to the most up-to-date chromosomes and the
ChIP/Input ratio value of each oligo can then be plotted along the
chromosome. These values can be displayed either by a program
within NTAP or they can be exported in the GFF format to be
displayed in the Generic Genome Browser GBrowse (Stein et al.,
2002).

3 IMPLEMENTATION
Most of the functions are implemented in the R statistical language
(http://www.r-project.org/) and Perl. Users can also choose any other
software to pre-process their data before using our post-processing
modules.
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